Coupled-least-squares identification for multivariable systems

This article studies identification problems of multiple linear regression models, which may be described a class of multi-input multi-output systems (i.e. multivariable systems). Based on the coupling identification concept, a novel coupled-least-squares (C-LS) parameter identification algorithm is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET control theory & applications Ročník 7; číslo 1; s. 68 - 79
Hlavní autor: Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Stevenage The Institution of Engineering and Technology 01.01.2013
John Wiley & Sons, Inc
Témata:
ISSN:1751-8644, 1751-8652
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article studies identification problems of multiple linear regression models, which may be described a class of multi-input multi-output systems (i.e. multivariable systems). Based on the coupling identification concept, a novel coupled-least-squares (C-LS) parameter identification algorithm is introduced for the purpose of avoiding the matrix inversion in the multivariable recursive least-squares (RLS) algorithm for estimating the parameters of the multiple linear regression models. The analysis indicates that the C-LS algorithm does not involve the matrix inversion and requires less computationally efforts than the multivariable RLS algorithm, and that the parameter estimates given by the C-LS algorithm converge to their true values. Simulation results confirm the presented convergence theorems.
Bibliografie:Control Science and Engineering Research Center, Jiangnan University, Wuxi 214122, People's Republic of China
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1751-8644
1751-8652
DOI:10.1049/iet-cta.2012.0171