A transformation‐free linear regression for compositional outcomes and predictors
Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their u...
Uložené v:
| Vydané v: | Biometrics Ročník 78; číslo 3; s. 974 - 987 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Blackwell Publishing Ltd
01.09.2022
|
| Predmet: | |
| ISSN: | 0006-341X, 1541-0420, 1541-0420 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research. |
|---|---|
| AbstractList | Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research. Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log‐ratio transformations. We develop a transformation‐free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data‐generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research. Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log-ratio transformations. We develop a transformation-free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data-generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research.Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and predictor variables are compositional is limited, and the existing models are often difficult to interpret in the compositional space, due to their use of complex log-ratio transformations. We develop a transformation-free linear regression model where the expected value of the compositional outcome is expressed as a single Markov transition from the compositional predictor. Our approach is based on estimating equations thereby not requiring complete specification of data likelihood and is robust to different data-generating mechanisms. Our model is simple to interpret, allows for 0s and 1s in both the compositional outcome and covariates, and subsumes several interesting subcases of interest. We also develop permutation tests for linear independence and equality of effect sizes of two components of the predictor. Finally, we show that despite its simplicity, our model accurately captures the relationship between compositional data using two datasets from education and medical research. |
| Author | Fiksel, Jacob Zeger, Scott Datta, Abhirup |
| Author_xml | – sequence: 1 givenname: Jacob orcidid: 0000-0001-7067-1334 surname: Fiksel fullname: Fiksel, Jacob email: jfiksel@gmail.com organization: Johns Hopkins University – sequence: 2 givenname: Scott surname: Zeger fullname: Zeger, Scott organization: Johns Hopkins University – sequence: 3 givenname: Abhirup surname: Datta fullname: Datta, Abhirup organization: Johns Hopkins University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33788259$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c1K5TAUB_Agil4_Nj6AFNwMQp2cnKYfSxVHBcXFKLgraXIqkba5Ji2Du3mEeUafZHK96kJEswlJfueQ5L_JVgc3EGO7wA8hjp-Ndf0hYJbLFTYDmUHKM8FX2YxznqeYwd0G2wzhIS4rycU620AsylLIasZ-HyWjV0None_VaN3w_Pdf64mSzg6kfOLp3lMI8SCJJNGun7tgF1B1iZvGuEEhUYNJ5p6M1aPzYZuttaoLtPM6b7HbX6c3J-fp5fXZxcnRZaozkcvUcJ0jz6sSWzCGl6gEqBIyRGygMA2SNJqyRiJxhFZU2ohWxYu3vFIGDW6xH8u-c-8eJwpj3dugqevUQG4KtSgBqkIAyu-p5EUhMoki0v0P9MFNPj43qgKqXArBq6j2XtXU9GTqube98k_1289GcLAE2rsQPLXvBHi9iK1exFa_xBYx_4C1HV_iiOHY7vMSWJb8sR09fdG8Pr64vlrW_AffyqqG |
| CitedBy_id | crossref_primary_10_1080_03610926_2021_2014890 crossref_primary_10_1016_j_apm_2024_02_037 crossref_primary_10_1108_IJOA_09_2021_2970 crossref_primary_10_1007_s11222_024_10560_z crossref_primary_10_1680_jenes_23_00110 crossref_primary_10_1007_s11222_024_10382_z crossref_primary_10_1016_j_scitotenv_2023_164344 crossref_primary_10_1093_bioinformatics_btaf387 crossref_primary_10_1038_s41598_022_11044_8 crossref_primary_10_7717_peerj_11936 |
| Cites_doi | 10.6339/JDS.201901_17(1).0010 10.1080/02664763.2016.1157145 10.1177/0962280217710835 10.17713/ajs.v47i5.718 10.1002/9781119976462.ch25 10.1080/01621459.2021.1909599 10.1007/BF00891269 10.1177/0962280214560047 10.1111/j.1467-9876.2008.00627.x 10.1080/02664763.2011.644268 10.1016/j.apgeochem.2008.03.004 10.1111/j.2517-6161.1977.tb01600.x 10.1515/jem-2012-0006 10.1007/978-3-319-96422-5 10.2307/1913471 10.32614/RJ-2017-016 10.1198/016214501753381850 10.1111/j.2517-6161.1982.tb01195.x 10.1353/mpq.0.0030 10.1023/A:1023818214614 10.1093/biomet/71.2.323 10.1007/BF00048682 10.18637/jss.v087.c03 10.1093/biomet/asu031 10.1080/07474938.2013.806849 10.1007/978-3-642-36809-7 10.2307/1913295 10.1007/978-94-009-4109-0 10.1093/biomet/86.2.351 10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society. 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society. 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC on behalf of International Biometric Society. – notice: 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society. – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.13465 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | ProQuest Computer Science Collection PubMed AGRICOLA MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics Education |
| EISSN | 1541-0420 |
| EndPage | 987 |
| ExternalDocumentID | 33788259 10_1111_biom_13465 BIOM13465 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 24P 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEFGJ AEOTA AFFHD AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJBYB AJNCP CITATION H13 O8X PHGZM PHGZT PJZUB PPXIY PQGLB NPM AGORE ESTFP JQ2 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4265-d0c6306983f1dd083a21a814333b17db3e5dce4b53e031f29cd2fa788f09ad3d3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000646722300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:12:54 EDT 2025 Sat Sep 27 22:11:53 EDT 2025 Sat Sep 06 22:31:45 EDT 2025 Wed Feb 19 02:28:48 EST 2025 Sat Nov 29 02:10:09 EST 2025 Tue Nov 18 22:38:16 EST 2025 Wed Jan 22 16:21:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Kullback-Leibler distance loss function compositional data expectation-maximization algorithm transformation-free estimating equation |
| Language | English |
| License | Attribution-NonCommercial 2021 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4265-d0c6306983f1dd083a21a814333b17db3e5dce4b53e031f29cd2fa788f09ad3d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7067-1334 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13465 |
| PMID | 33788259 |
| PQID | 2719652209 |
| PQPubID | 35366 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2811972135 proquest_miscellaneous_2507724532 proquest_journals_2719652209 pubmed_primary_33788259 crossref_primary_10_1111_biom_13465 crossref_citationtrail_10_1111_biom_13465 wiley_primary_10_1111_biom_13465_BIOM13465 |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biometrics |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2015; 4 2011 2017; 44 2019; 17 2003; 35 2013; 122 2008; 57 1999; 86 2005 2012; 39 2003 1977; 45 2018; 87 2018; 27 2017; 9 2016; 35 2018; 47 1996; 11 2009; 55 1984; 52 1984; 71 1977; 39 2021 2020 2020; 92 1982; 44 1986 2018 1970; 65 2008; 23 1992; 24 2015 2001; 1 2014 1992; 44 2016; 25 2001; 96 2014; 101 Aitchison J. (e_1_2_9_5_1) 2003 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Maier M.J. (e_1_2_9_32_1) 2014 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 Lee T.‐C. (e_1_2_9_28_1) 1970 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 Du Y. (e_1_2_9_14_1) 2020; 92 e_1_2_9_7_1 Friedman J. (e_1_2_9_22_1) 2001 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Nguyen T.H.A. (e_1_2_9_36_1) 2018 Jones M.M.T. (e_1_2_9_27_1) 2005 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_29_1 |
| References_xml | – volume: 35 start-page: 279 year: 2003 end-page: 300 article-title: Isometric log ratio transformations for compositional data analysis publication-title: Mathematical Geology – volume: 35 start-page: 515 year: 2016 end-page: 552 article-title: Regression analysis of multivariate fractional data publication-title: Econometric Reviews – volume: 24 start-page: 365 year: 1992 end-page: 379 article-title: On criteria for measures of compositional difference publication-title: Mathematical Geology – volume: 57 start-page: 505 year: 2008 end-page: 520 article-title: A latent Gaussian model for compositional data with zeros publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics) – year: 2005 – volume: 39 start-page: 1115 year: 2012 end-page: 1128 article-title: Linear regression with compositional explanatory variables publication-title: Journal of Applied Statistics – start-page: 341 year: 2011 end-page: 355 – year: 2003 – volume: 71 start-page: 323 year: 1984 end-page: 330 article-title: Log contrast models for experiments with mixtures publication-title: Biometrika – volume: 9 start-page: 421 year: 2017 end-page: 436 article-title: pdp: an R package for constructing partial dependence plots publication-title: The R Journal – volume: 96 start-page: 1205 year: 2001 end-page: 1214 article-title: Statistical interpretation of species composition publication-title: Journal of the American Statistical Association – volume: 1 year: 2001 – volume: 52 start-page: 681 year: 1984 end-page: 700 article-title: Pseudo maximum likelihood methods: theory publication-title: Econometrica – volume: 44 start-page: 139 year: 1982 end-page: 160 article-title: The statistical analysis of compositional data publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 25 start-page: 3057 year: 2016 end-page: 3065 article-title: Applying compositional data methodology to nutritional epidemiology publication-title: Statistical Methods in Medical Research – volume: 101 start-page: 785 year: 2014 end-page: 797 article-title: Variable selection in regression with compositional covariates publication-title: Biometrika – volume: 11 start-page: 619 year: 1996 end-page: 632 article-title: Econometric methods for fractional response variables with an application to 401 (k) plan participation rates publication-title: Journal of Applied Econometrics – year: 2018 – year: 2014 – year: 2021 article-title: Generalized bayes quantification learning under dataset shift publication-title: Journal of the American Statistical Association – year: 1986 – volume: 65 year: 1970 – volume: 92 start-page: 1 year: 2020 end-page: 41 article-title: SQUAREM: An R package for off‐the‐shelf acceleration of EM, MM and other EM‐like monotone algorithms publication-title: Journal of Statistical Software, Articles – volume: 44 start-page: 197 year: 1992 end-page: 200 article-title: Multinomial logistic regression algorithm publication-title: Annals of the Institute of Statistical Mathematics – volume: 27 start-page: 3726 year: 2018 end-page: 3738 article-title: Compositional data analysis for physical activity, sedentary time and sleep research publication-title: Statistical Methods in Medical Research – volume: 47 start-page: 1 year: 2018 end-page: 25 article-title: Interpretation of explanatory variables impacts in compositional regression models publication-title: Austrian Journal of Statistics – volume: 55 start-page: 224 year: 2009 article-title: Long‐term effects of parents' education on children's educational and occupational success: Mediation by family interactions, child aggression, and teenage aspirations publication-title: Merrill‐Palmer Quarterly (Wayne State University. Press) – volume: 86 start-page: 351 year: 1999 end-page: 364 article-title: Convex linear combinations of compositions publication-title: Biometrika – volume: 23 start-page: 2198 year: 2008 end-page: 2213 article-title: Cluster analysis applied to regional geochemical data: problems and possibilities publication-title: Applied Geochemistry – volume: 45 start-page: 183 year: 1977 end-page: 198 article-title: Estimation of time‐varying Markov processes with aggregate data publication-title: Econometrica – year: 2020 – volume: 44 start-page: 2270 year: 2017 end-page: 2285 article-title: Multiple linear regression with compositional response and covariates publication-title: Journal of Applied Statistics – volume: 122 year: 2013 – volume: 39 start-page: 1 year: 1977 end-page: 22 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 17 start-page: 219 year: 2019 end-page: 237 article-title: Regression for compositional data with compositional data as predictor variables with or without zero values publication-title: Journal of Data Science – year: 2015 – volume: 87 start-page: 1 year: 2018 end-page: 17 article-title: ggtern: Ternary diagrams using ggplot2 publication-title: Journal of Statistical Software, Code Snippets – volume: 4 start-page: 71 year: 2015 end-page: 100 article-title: Multivariate fractional regression estimation of econometric share models publication-title: Journal of Econometric Methods – ident: e_1_2_9_8_1 doi: 10.6339/JDS.201901_17(1).0010 – ident: e_1_2_9_12_1 doi: 10.1080/02664763.2016.1157145 – ident: e_1_2_9_16_1 doi: 10.1177/0962280217710835 – ident: e_1_2_9_33_1 doi: 10.17713/ajs.v47i5.718 – ident: e_1_2_9_39_1 doi: 10.1002/9781119976462.ch25 – ident: e_1_2_9_20_1 doi: 10.1080/01621459.2021.1909599 – ident: e_1_2_9_4_1 doi: 10.1007/BF00891269 – ident: e_1_2_9_29_1 doi: 10.1177/0962280214560047 – ident: e_1_2_9_11_1 doi: 10.1111/j.1467-9876.2008.00627.x – volume-title: The Statistical Analysis of Compositional Data year: 2003 ident: e_1_2_9_5_1 – volume-title: Estimating Markov transition matrices using proportions data: an application to credit risk year: 2005 ident: e_1_2_9_27_1 – ident: e_1_2_9_26_1 doi: 10.1080/02664763.2011.644268 – ident: e_1_2_9_38_1 doi: 10.1016/j.apgeochem.2008.03.004 – ident: e_1_2_9_13_1 doi: 10.1111/j.2517-6161.1977.tb01600.x – volume-title: The Elements of Statistical Learning year: 2001 ident: e_1_2_9_22_1 – ident: e_1_2_9_34_1 doi: 10.1515/jem-2012-0006 – volume-title: Dirichletreg: Dirichlet regression for compositional data in R year: 2014 ident: e_1_2_9_32_1 – ident: e_1_2_9_21_1 doi: 10.1007/978-3-319-96422-5 – ident: e_1_2_9_23_1 doi: 10.2307/1913471 – ident: e_1_2_9_19_1 – ident: e_1_2_9_24_1 doi: 10.32614/RJ-2017-016 – ident: e_1_2_9_40_1 – ident: e_1_2_9_9_1 doi: 10.1198/016214501753381850 – ident: e_1_2_9_2_1 doi: 10.1111/j.2517-6161.1982.tb01195.x – ident: e_1_2_9_15_1 doi: 10.1353/mpq.0.0030 – volume-title: Analyzing the impacts of socio‐economic factors on French departmental elections with coda methods year: 2018 ident: e_1_2_9_36_1 – volume: 92 start-page: 1 year: 2020 ident: e_1_2_9_14_1 article-title: SQUAREM: An R package for off‐the‐shelf acceleration of EM, MM and other EM‐like monotone algorithms publication-title: Journal of Statistical Software, Articles – ident: e_1_2_9_17_1 doi: 10.1023/A:1023818214614 – ident: e_1_2_9_6_1 doi: 10.1093/biomet/71.2.323 – ident: e_1_2_9_10_1 doi: 10.1007/BF00048682 – ident: e_1_2_9_25_1 doi: 10.18637/jss.v087.c03 – ident: e_1_2_9_30_1 doi: 10.1093/biomet/asu031 – ident: e_1_2_9_35_1 doi: 10.1080/07474938.2013.806849 – ident: e_1_2_9_41_1 doi: 10.1007/978-3-642-36809-7 – ident: e_1_2_9_18_1 – ident: e_1_2_9_31_1 doi: 10.2307/1913295 – ident: e_1_2_9_3_1 doi: 10.1007/978-94-009-4109-0 – ident: e_1_2_9_7_1 doi: 10.1093/biomet/86.2.351 – ident: e_1_2_9_37_1 doi: 10.1002/(SICI)1099-1255(199611)11:6<619::AID-JAE418>3.0.CO;2-1 – volume-title: Estimating the Parameters of the Markov Probability Model from Aggregate Time Series Data year: 1970 ident: e_1_2_9_28_1 |
| SSID | ssj0009502 |
| Score | 2.4720151 |
| Snippet | Compositional data are common in many fields, both as outcomes and predictor variables. The inventory of models for the case when both the outcome and... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 974 |
| SubjectTerms | biomedical research compositional data data collection education estimating equation expectation‐maximization algorithm Genetic transformation inventories Kullback–Leibler distance loss function Medical research Permutations Regression analysis Regression models Transformations transformation‐free |
| Title | A transformation‐free linear regression for compositional outcomes and predictors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13465 https://www.ncbi.nlm.nih.gov/pubmed/33788259 https://www.proquest.com/docview/2719652209 https://www.proquest.com/docview/2507724532 https://www.proquest.com/docview/2811972135 |
| Volume | 78 |
| WOSCitedRecordID | wos000646722300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: DRFUL dateStart: 19990101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9qq1Afqp5fV2tZ0ReFlOxHkg30pX4cCrYWtXBvYb_ii-RK7k7wzT_Bv9G_pDObXLyiFMSXEJIJO-zO7P4mO_sbgGcGlxVb1zZRecgTVaQ20Tp3SZAmiNT5LFgbi00UJyd6Oi1PN-BwdRam44cYfriRZ8T5mhzc2Pmak9Px9AMuVZ5dgy3OpabCDUKdrlHuph1XOGV3KT7tyUkpj-f3t5eXoz8w5mXIGtecya3_0_Y27PRYkx11xnEHNkIzghtd9cnvI7h5PFC2zkewTbCzY22-C5-O2GIN0c6aXz9-1m0IjBQxLWvDly5_tmEowigvvU_-wvZmywU-CHNmGs_OW9oJopI-9-Bs8ubzq7dJX34hcbhsZ4lPXY4BRallzb1HqGYENxrxlZSWF97KkHkXlM1kwJmhFqXzojYYUtdpabz08j5sNrMmPAQmS5waXMhNWntVlFy71GmFUATthwsnxvB8NQqV67nJqUTG12oVo1D_VbH_xvB0kD3vGDn-KrW3Gsyq98p5JQriTxQiLcfwZHiN_kSbJKYJsyXKIEAuhMqkuEJGx2ptXGIzDzpDGVSRRNCPMeUYXkR7uELH6uW7D8fxbvdfhB_BtqAzGDHRbQ82F-0yPIbr7hsaSbsffQCvxVTvw9brj5Oz9xfXJA2D |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB7BAoIeWtgC3Za2RuVCpaDEdv6OFHUFKrsgQaW9RY7t9FJlUXYXqbc-Qp-xT9IZJ5suAiEhblEykS17xvONPf4G4EChW8mLIvdkZCNPxn7uJUmkPSuU5b42oc1zV2wiHg6T0Si9bHJz6C5MzQ_RbriRZbj1mgycNqQXrJzupx8FQkbhMqxIdDOk5lxeLnDu-jVZOKV3yWDUsJNSIs__f-_6o3sg8y5mdU6n_-qZ3d2Elw3aZMe1emzBki27sFbXn_zVhReDlrR10oUNAp41b_NruDpm0wVMOy7__v5TVNYy6omqWGV_1Bm0JUMRRpnpTfoXtjeeTfGFnTBVGnZT0VkQFfXZhu_9r9cnp15TgMHT6LhDz_g6wpAiTUQRGINgTfFAJTjQQuRBbHJhQ6OtzENhcW0oeKoNLxQG1YWfKiOM2IFOOS7tG2AixcVB20j5hZFxGiTa14lEMIIaFHDNe3A4n4ZMN-zkVCTjZzaPUmj8Mjd-PfjUyt7UnBwPSu3NZzNr7HKS8ZgYFDn30x7st5_RouiYRJV2PEMZhMgxl6Hgj8gkrl5bILCZ3VpT2q4IoujHqLIHn51CPNLH7MvZxcA9vX2K8EdYP70enGfnZ8Nv72CD040Ml_a2B51pNbPvYVXfosJUH5xB_AMUiQ7m |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFlB74LHlsVDACC4gpUps53UslBUV7VIBlfYWOfaYC8qusrtI3PgJ_EZ-SWeSbNgKVAlxi5KJMrJnPN_E428AXhgKK6X3ZaATTAKdhmWQZYkNUBmUoXUxlmXTbCKdTLLpND_tanP4LEzLD9H_cGPPaNZrdnCcO7_h5Xw-fT9SOomvwpbmLjID2Dr8OD473mDdDVu6cC7w0tG04yflUp7fb1-MSH_AzIuotQk741v_qfBtuNnhTXHQGsgduILVEK63HSi_D2HnpKdtXQxhm6Fny9y8C58OxHID1c6qXz9--hpRsCamFjV-aWtoK0EigmvTuwIw-t5staQbuBCmcmJe824Qt_W5C2fjt5_fvAu6FgyBpdAdBy60CSUVeaZ85BzBNSMjkxHGUqqMUlcqjJ1FXcYKaXXwMrdOekNptQ9z45RT92BQzSp8AELltDxYTEzonU7zKLOhzTTBEbKhSFo5gpfraShsx0_ObTK-Fus8hcevaMZvBM972XnLyvFXqb31bBadZy4KmTKHopRhPoJn_WPyKd4oMRXOViRDIDmVOlbyEpms6dgWKfrM_dZSelUUk_RTXjmCV41BXKJj8frow0lz9fBfhJ_CjdPDcXF8NHn_CLYlH8lo6t72YLCsV_gYrtlvZC_1k84jzgF3BA_8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transformation%E2%80%90free+linear+regression+for+compositional+outcomes+and+predictors&rft.jtitle=Biometrics&rft.au=Fiksel%2C+Jacob&rft.au=Zeger%2C+Scott&rft.au=Datta%2C+Abhirup&rft.date=2022-09-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=78&rft.issue=3&rft.spage=974&rft.epage=987&rft_id=info:doi/10.1111%2Fbiom.13465&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13465 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |