An intrusion detection method for internet of things based on suppressed fuzzy clustering
In order to improve the effectiveness of intrusion detection, an intrusion detection method of the Internet of Things (IoT) is proposed by suppressed fuzzy clustering (SFC) algorithm and principal component analysis (PCA) algorithm. In this method, the data are classified into high-risk data and low...
Uložené v:
| Vydané v: | EURASIP journal on wireless communications and networking Ročník 2018; číslo 1; s. 1 - 7 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
09.05.2018
Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In order to improve the effectiveness of intrusion detection, an intrusion detection method of the Internet of Things (IoT) is proposed by suppressed fuzzy clustering (SFC) algorithm and principal component analysis (PCA) algorithm. In this method, the data are classified into high-risk data and low-risk data at first, which are detected by high frequency and low frequency, respectively. At the same time, the self-adjustment of the detection frequency is carried out according to the suppressed fuzzy clustering algorithm and the principal component analysis algorithm. Finally, the key factors influencing the algorithm are analyzed deeply by simulation experiment. The results shows that, compared to traditional method, this method has better adaptability. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1499 1687-1472 1687-1499 |
| DOI: | 10.1186/s13638-018-1128-z |