An intrusion detection method for internet of things based on suppressed fuzzy clustering

In order to improve the effectiveness of intrusion detection, an intrusion detection method of the Internet of Things (IoT) is proposed by suppressed fuzzy clustering (SFC) algorithm and principal component analysis (PCA) algorithm. In this method, the data are classified into high-risk data and low...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:EURASIP journal on wireless communications and networking Ročník 2018; číslo 1; s. 1 - 7
Hlavní autori: Liu, Liqun, Xu, Bing, Zhang, Xiaoping, Wu, Xianjun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 09.05.2018
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:1687-1499, 1687-1472, 1687-1499
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In order to improve the effectiveness of intrusion detection, an intrusion detection method of the Internet of Things (IoT) is proposed by suppressed fuzzy clustering (SFC) algorithm and principal component analysis (PCA) algorithm. In this method, the data are classified into high-risk data and low-risk data at first, which are detected by high frequency and low frequency, respectively. At the same time, the self-adjustment of the detection frequency is carried out according to the suppressed fuzzy clustering algorithm and the principal component analysis algorithm. Finally, the key factors influencing the algorithm are analyzed deeply by simulation experiment. The results shows that, compared to traditional method, this method has better adaptability.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-018-1128-z