A predictor-corrector iterative method for solving linear least squares problems and perturbation error analysis

The motivation of the present work concerns two objectives. Firstly, a predictor-corrector iterative method of convergence order p = 45 requiring 10 matrix by matrix multiplications per iteration is proposed for computing the Moore–Penrose inverse of a nonzero matrix of rank = r . Convergence and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of inequalities and applications Jg. 2019; H. 1; S. 1 - 14
Hauptverfasser: Buranay, Suzan C., Iyikal, Ovgu C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 20.07.2019
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:1029-242X, 1025-5834, 1029-242X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The motivation of the present work concerns two objectives. Firstly, a predictor-corrector iterative method of convergence order p = 45 requiring 10 matrix by matrix multiplications per iteration is proposed for computing the Moore–Penrose inverse of a nonzero matrix of rank = r . Convergence and a priori error analysis of the proposed method are given. Secondly, the numerical solution to the general linear least squares problems by an algorithm using the proposed method and the perturbation error analysis are provided. Furthermore, experiments are conducted on the ill-posed problem of one-dimensional image restoration and on some test problems from Harwell–Boeing collection. Obtained numerical results show the applicability, stability, and the estimated order of convergence of the proposed method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1029-242X
1025-5834
1029-242X
DOI:10.1186/s13660-019-2154-z