Virtual machine scheduling strategy based on machine learning algorithms for load balancing

With the rapid increase of user access, load balancing in cloud data center has become an important factor affecting cluster stability. From the point of view of green scheduling, this paper proposed a virtual machine intelligent scheduling strategy based on machine learning algorithm to achieve loa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EURASIP journal on wireless communications and networking Ročník 2019; číslo 1; s. 1 - 16
Hlavní autoři: Sui, Xin, Liu, Dan, Li, Li, Wang, Huan, Yang, Hongwei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 17.06.2019
Springer Nature B.V
SpringerOpen
Témata:
ISSN:1687-1499, 1687-1472, 1687-1499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the rapid increase of user access, load balancing in cloud data center has become an important factor affecting cluster stability. From the point of view of green scheduling, this paper proposed a virtual machine intelligent scheduling strategy based on machine learning algorithm to achieve load balancing of cloud data center. Firstly, a load forecasting algorithm based on genetic algorithm (SVR_GA), k -means clustering algorithm based on optimized min-max, and adaptive differential evolution algorithm (ESA_DE) to enhance local search ability are proposed to solve the load imbalance problem in cloud data center. The experimental results showed that compared with other classical algorithms, the proposed virtual machine scheduling strategy reduces the number of virtual machine migration by 94.5% and the energy consumption of cloud data center by 49.13%.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-1499
1687-1472
1687-1499
DOI:10.1186/s13638-019-1454-9