Perfectly Balanced Boolean Functions and Golić Conjecture

In the current paper we consider the following properties of filters: perfect balancedness of a filter function (i.e. preserving pure randomness of the input sequence) and linearity of a filter function in the first or the last essential variable. Previous results on this subject are discussed, incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cryptology Jg. 25; H. 3; S. 464 - 483
1. Verfasser: Smyshlyaev, Stanislav V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer-Verlag 01.07.2012
Springer Nature B.V
Schlagworte:
ISSN:0933-2790, 1432-1378
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the current paper we consider the following properties of filters: perfect balancedness of a filter function (i.e. preserving pure randomness of the input sequence) and linearity of a filter function in the first or the last essential variable. Previous results on this subject are discussed, including misleading statements in Gouget and Sibert (LNCS, vol. 4876, 2007 ) about the connection between perfect balancedness and resistance to Anderson conditional correlation attack; the incorrectness of two known results, the sufficient condition of perfect balancedness in Golić (LNCS, vol. 1039, 1996 ) and the necessary condition of perfect balancedness in Dichtl (LNCS, vol. 1267, 1997 ), is demonstrated by providing counterexamples. We present a novel method of constructing large classes of perfectly balanced functions that are nonlinear in the first and the last essential variable and obtain a new lower bound of the number of such functions. Golić conjecture (LNCS, vol. 1039, 1996 ) states that the necessary and sufficient condition for a function to be perfectly balanced for any choice of a tapping sequence is linearity of a function in the first or the last essential variable. In the second part of the current paper we prove the Golić conjecture.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0933-2790
1432-1378
DOI:10.1007/s00145-011-9100-7