Improved Backward Error Bounds for LU and Cholesky Factorizations

Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\wideh...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on matrix analysis and applications Ročník 35; číslo 2; s. 684 - 698
Hlavní autori: Rump, Siegfried M., Jeannerod, Claude-Pierre
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.01.2014
Predmet:
ISSN:0895-4798, 1095-7162
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Assuming standard floating-point arithmetic (in base $\beta$, precision $p$) and barring underflow and overflow, classical rounding error analysis of the LU or Cholesky factorization of an $n\times n$ matrix $A$ provides backward error bounds of the form $|\Delta A| \le \gamma_n |\widehat L| |\widehat U|$ or $|\Delta A| \le \gamma_{n+1} |\widehat R^T| |\widehat R|$. Here, $\widehat L$, $\widehat U$, and $\widehat R$ denote the computed factors, and $\gamma_n$ is the usual fraction $nu/(1-nu) = nu + {\mathcal O}(u^2)$ with $u$ the unit roundoff. Similarly, when solving an $n\times n$ triangular system $Tx = b$ by substitution, the computed solution $\widehat x$ satisfies $(T+\Delta T)\widehat x = b$ with $|\Delta T| \le \gamma_n |T|$. All these error bounds contain quadratic terms in $u$ and limit $n$ to satisfy either $nu<1$ or $(n+1)u < 1$. We show in this paper that the constants $\gamma_n$ and $\gamma_{n+1}$ can be replaced by $nu$ and $(n+1)u$, respectively, and that the restrictions on $n$ can be removed. To get these new bounds the main ingredient is a general framework for bounding expressions of the form $|\rho-s|$, where $s$ is the exact sum of a floating-point number and $n-1$ real numbers and where $\rho$ is a real number approximating the computed sum $\widehat s$. By instantiating this framework with suitable values of $\rho$, we obtain improved versions of the well-known Lemma 8.4 from [N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002] (used for analyzing triangular system solving and LU factorization) and of its Cholesky variant. All our results hold for rounding to nearest with any tie-breaking strategy and whatever the order of summation. [PUBLICATION ABSTRACT]
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0895-4798
1095-7162
DOI:10.1137/130927231