Numerical Analysis of Nonlinear Eigenvalue Problems

We provide a priori error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div( A ∇ u )+ Vu + f ( u 2 ) u = λ u , . We focus in particular on the Fourier spectral approximation (for periodic problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing Jg. 45; H. 1-3; S. 90 - 117
Hauptverfasser: Cancès, Eric, Chakir, Rachida, Maday, Yvon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.10.2010
Springer Nature B.V
Springer Verlag
Schlagworte:
ISSN:0885-7474, 1573-7691
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a priori error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div( A ∇ u )+ Vu + f ( u 2 ) u = λ u , . We focus in particular on the Fourier spectral approximation (for periodic problems) and on the ℙ 1 and ℙ 2 finite-element discretizations. Denoting by ( u δ , λ δ ) a variational approximation of the ground state eigenpair ( u , λ ), we are interested in the convergence rates of , , | λ δ − λ |, and the ground state energy, when the discretization parameter δ goes to zero. We prove in particular that if A , V and f satisfy certain conditions, | λ δ − λ | goes to zero as . We also show that under more restrictive assumptions on A , V and f , | λ δ − λ | converges to zero as , thus recovering a standard result for linear elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error u δ − u in negative Sobolev norms.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0885-7474
1573-7691
DOI:10.1007/s10915-010-9358-1