Numerical Analysis of Nonlinear Eigenvalue Problems
We provide a priori error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div( A ∇ u )+ Vu + f ( u 2 ) u = λ u , . We focus in particular on the Fourier spectral approximation (for periodic problem...
Gespeichert in:
| Veröffentlicht in: | Journal of scientific computing Jg. 45; H. 1-3; S. 90 - 117 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.10.2010
Springer Nature B.V Springer Verlag |
| Schlagworte: | |
| ISSN: | 0885-7474, 1573-7691 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We provide
a priori
error estimates for variational approximations of the ground state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the form −div(
A
∇
u
)+
Vu
+
f
(
u
2
)
u
=
λ
u
,
. We focus in particular on the Fourier spectral approximation (for periodic problems) and on the ℙ
1
and ℙ
2
finite-element discretizations. Denoting by (
u
δ
,
λ
δ
) a variational approximation of the ground state eigenpair (
u
,
λ
), we are interested in the convergence rates of
,
, |
λ
δ
−
λ
|, and the ground state energy, when the discretization parameter
δ
goes to zero. We prove in particular that if
A
,
V
and
f
satisfy certain conditions, |
λ
δ
−
λ
| goes to zero as
. We also show that under more restrictive assumptions on
A
,
V
and
f
, |
λ
δ
−
λ
| converges to zero as
, thus recovering a standard result for
linear
elliptic eigenvalue problems. For the latter analysis, we make use of estimates of the error
u
δ
−
u
in negative Sobolev norms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0885-7474 1573-7691 |
| DOI: | 10.1007/s10915-010-9358-1 |