Solving knapsack problems with S-curve return functions

We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an S-curve, where increasing returns to scal...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 193; no. 2; pp. 605 - 615
Main Authors: Ağralı, Semra, Geunes, Joseph
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.03.2009
Elsevier
Elsevier Sequoia S.A
Series:European Journal of Operational Research
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an S-curve, where increasing returns to scale exist at small investment levels, and decreasing returns to scale occur at high investment levels. We demonstrate that the resulting knapsack problem with S-curve return functions is NP-hard, provide a pseudo-polynomial time algorithm for the integer variable version of the problem, and develop efficient solution methods for special cases of the problem. We also discuss a fully-polynomial-time approximation algorithm for the integer variable version of the problem.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2007.10.060