Solving knapsack problems with S-curve return functions
We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an S-curve, where increasing returns to scal...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 193; číslo 2; s. 605 - 615 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.03.2009
Elsevier Elsevier Sequoia S.A |
| Edice: | European Journal of Operational Research |
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an
S-curve, where increasing returns to scale exist at small investment levels, and decreasing returns to scale occur at high investment levels. We demonstrate that the resulting knapsack problem with
S-curve return functions is NP-hard, provide a pseudo-polynomial time algorithm for the integer variable version of the problem, and develop efficient solution methods for special cases of the problem. We also discuss a fully-polynomial-time approximation algorithm for the integer variable version of the problem. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2007.10.060 |