Solving knapsack problems with S-curve return functions

We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an S-curve, where increasing returns to scal...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 193; číslo 2; s. 605 - 615
Hlavní autoři: Ağralı, Semra, Geunes, Joseph
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.03.2009
Elsevier
Elsevier Sequoia S.A
Edice:European Journal of Operational Research
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider the allocation of a limited budget to a set of activities or investments in order to maximize return from investment. In a number of practical contexts (e.g., advertising), the return from investment in an activity is effectively modeled using an S-curve, where increasing returns to scale exist at small investment levels, and decreasing returns to scale occur at high investment levels. We demonstrate that the resulting knapsack problem with S-curve return functions is NP-hard, provide a pseudo-polynomial time algorithm for the integer variable version of the problem, and develop efficient solution methods for special cases of the problem. We also discuss a fully-polynomial-time approximation algorithm for the integer variable version of the problem.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2007.10.060