Machine learning enables polymer cloud-point engineering via inverse design

Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. Here we demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj computational materials Jg. 5; H. 1; S. 1 - 6
Hauptverfasser: Kumar, Jatin N., Li, Qianxiao, Tang, Karen Y. T., Buonassisi, Tonio, Gonzalez-Oyarce, Anibal L., Ye, Jun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 12.07.2019
Nature Publishing Group
Schlagworte:
ISSN:2057-3960, 2057-3960
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. Here we demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4 °C root mean squared error (RMSE) in a temperature range of 24–90 °C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80 °C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2057-3960
2057-3960
DOI:10.1038/s41524-019-0209-9