Matched steering vector searching based direction-of-arrival estimation using acoustic vector sensor array
The acoustic vector sensor (AVS) array is a powerful tool for underwater target’s direction-of-arrival (DOA) estimation without any bearing ambiguities. However, traditional DOA estimation algorithms generally suffer from low signal-to-noise ratio (SNR) as well as snapshot deficiency. By exploiting...
Saved in:
| Published in: | EURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 10 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
29.08.2019
Springer Nature B.V SpringerOpen |
| Subjects: | |
| ISSN: | 1687-1499, 1687-1472, 1687-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The acoustic vector sensor (AVS) array is a powerful tool for underwater target’s direction-of-arrival (DOA) estimation without any bearing ambiguities. However, traditional DOA estimation algorithms generally suffer from low signal-to-noise ratio (SNR) as well as snapshot deficiency. By exploiting the properties of the minimum variance distortionless response (MVDR) beamformer, a new DOA estimation method basing on matched steering vector searching is proposed in this article. Firstly, attain the rough estimate of the desired DOA using the traditional algorithms. Secondly, set a small angular interval around the crudely estimated DOA. Thirdly, make the view direction vary in the view interval, and for each view direction, calculate the beam amplitude response of the MVDR beamformer, and find the minimum of the amplitude response. Finally, the pseudo-spatial spectrum is achieved, and the accurate estimate of the desired DOA can be obtained through peak searching. Computer simulations verify that the proposed method is efficient in DOA estimation, especially in low SNR and insufficient snapshot data scenarios. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1687-1499 1687-1472 1687-1499 |
| DOI: | 10.1186/s13638-019-1536-8 |