Revisiting the spectral analysis for high-order spectral discontinuous methods

The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 337; S. 379 - 402
Hauptverfasser: Vanharen, Julien, Puigt, Guillaume, Vasseur, Xavier, Boussuge, Jean-François, Sagaut, Pierre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Elsevier Inc 15.05.2017
Elsevier Science Ltd
Elsevier
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion-relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space–time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,π], following the Matrix Power method. For wavenumbers above π, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than π. Since the new criteria recover the previous results for wavenumbers below π, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes.
AbstractList The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,pi], following the Matrix Power method. For wavenumbers above pi, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than it. Since the new criteria recover the previous results for wavenumbers below it, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes.
The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables to estimate the dissipation and the dispersion associated with the spatial discretisation of the hyperbolic linear problem. In this paper, we wish to revisit such analysis, focusing attention on two key points. The first point concerns the effects of time integration on the spectral analysis. It is shown with standard high-order Finite Difference schemes dedicated to aeroacoustics that the time integration has an effect on the required number of points per wavelength. The situation depends on the choice of the coupled schemes (one for time integration, one for space derivative and one for the filter) and here, the compact scheme with its eighth-order filter seems to have a better spectral accuracy than the considered dispersion-relation preserving scheme with its associated filter, especially in terms of dissipation. Secondly, such a coupled space–time approach is applied to the new class of high-order spectral discontinuous approaches, focusing especially on the Spectral Difference method. A new way to address the specific spectral behaviour of the scheme is introduced first for wavenumbers in [0,π], following the Matrix Power method. For wavenumbers above π, an aliasing phenomenon always occurs but it is possible to understand and to control the aliasing of the signal. It is shown that aliasing depends on the polynomial degree and on the number of time steps. A new way to define dissipation and dispersion is introduced and applied to wavenumbers larger than π. Since the new criteria recover the previous results for wavenumbers below π, the new proposed approach is an extension of all the previous ones dealing with dissipation and dispersion errors. At last, since the standard Finite Difference schemes can serve as reference solution for their capability in aeroacoustics, it is shown that the Spectral Difference method is as accurate as (or even more accurate) than the considered Finite Difference schemes.
Author Vasseur, Xavier
Vanharen, Julien
Sagaut, Pierre
Boussuge, Jean-François
Puigt, Guillaume
Author_xml – sequence: 1
  givenname: Julien
  orcidid: 0000-0002-0408-2467
  surname: Vanharen
  fullname: Vanharen, Julien
  email: julien.vanharen@cerfacs.fr
  organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France
– sequence: 2
  givenname: Guillaume
  surname: Puigt
  fullname: Puigt, Guillaume
  email: guillaume.puigt@cerfacs.fr
  organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France
– sequence: 3
  givenname: Xavier
  surname: Vasseur
  fullname: Vasseur, Xavier
  email: xavier.vasseur@isae.fr
  organization: ISAE-SUPAERO, 10 avenue Edouard Belin, BP 54032, 31055 Toulouse Cedex 4, France
– sequence: 4
  givenname: Jean-François
  surname: Boussuge
  fullname: Boussuge, Jean-François
  email: jean-francois.boussuge@cerfacs.fr
  organization: Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), 42 avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France
– sequence: 5
  givenname: Pierre
  surname: Sagaut
  fullname: Sagaut, Pierre
  email: pierre.sagaut@univ-amu.fr
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
BackLink https://hal.science/hal-01527618$$DView record in HAL
BookMark eNp9kE1r4zAQQMXSwqYfP6A3w572YHdGsiWbPYWwuy2EFkrvYirLsYxjZSUn0H9fhbQs9NDTgHhPzLwLdjb5yTJ2g1AgoLwdisHsCg6oCuAFlOIbWyA0kHOF8owtADjmTdPgd3YR4wAAdVXWC_bwZA8uutlNm2zubRZ31syBxowmGl-ji1nnQ9a7TZ_70NrwH2hdNH5K4t7vY7a1c-_beMXOOxqjvX6fl-z5z-_n1V2-fvx7v1quc1Pyas5RKSWamqzgYEpCI5GEMVyRqMq26sCWDUFFKIgLItViLSWnil5a0UkrLtnP07c9jXoX3JbCq_bk9N1yrY9vgBVXEusDJvbHid0F_29v46wHvw_puqg5VLKUom5kotSJMsHHGGynjZtpdunCQG7UCPrYWQ86ddbHzhq4Tp2TiZ_Mj4W-cn6dHJsaHZwNOhpnJ2NbF1Je3Xr3hf0Gd02Xkg
CitedBy_id crossref_primary_10_1016_j_jcp_2022_111070
crossref_primary_10_1016_j_jcp_2019_108883
crossref_primary_10_1016_j_jocs_2022_101703
crossref_primary_10_1016_j_jcp_2018_07_018
crossref_primary_10_2514_1_J059830
crossref_primary_10_1016_j_camwa_2022_08_005
crossref_primary_10_1016_j_jcp_2020_109276
crossref_primary_10_1007_s10494_021_00273_y
crossref_primary_10_1016_j_jcp_2021_110774
crossref_primary_10_1016_j_cma_2024_117413
crossref_primary_10_1093_imanum_drad006
crossref_primary_10_1093_mnras_stad226
crossref_primary_10_1007_s10915_020_01397_5
crossref_primary_10_1016_j_jcp_2022_111043
crossref_primary_10_1016_j_compfluid_2020_104433
crossref_primary_10_1007_s10915_022_02002_7
crossref_primary_10_1016_j_jocs_2020_101155
crossref_primary_10_1007_s10915_021_01484_1
crossref_primary_10_1016_j_jcp_2018_12_015
crossref_primary_10_1016_j_jcp_2021_110327
crossref_primary_10_1016_j_compfluid_2023_106060
crossref_primary_10_1007_s10494_021_00262_1
crossref_primary_10_1016_j_cad_2020_102846
crossref_primary_10_1016_j_jcp_2020_109860
crossref_primary_10_1007_s10915_020_01329_3
crossref_primary_10_1016_j_amc_2023_128426
crossref_primary_10_1016_j_jcp_2024_112983
Cites_doi 10.1016/j.jcp.2011.07.013
10.1016/j.jcp.2007.06.001
10.1016/0021-9991(92)90324-R
10.1007/s10915-011-9505-3
10.1016/j.compfluid.2013.12.007
10.1016/j.jcp.2003.09.003
10.1006/jcph.1999.6227
10.1016/j.jcp.2003.09.012
10.1016/j.jcp.2005.06.024
10.1007/s10915-010-9391-0
10.1016/j.cma.2011.08.019
10.1007/s10915-008-9201-0
10.1016/j.jcp.2006.01.024
10.1007/s10915-006-9113-9
10.1016/0021-9991(91)90264-L
10.1006/jcph.1993.1142
10.1006/jcph.2002.7041
10.1007/s10915-010-9420-z
10.1016/j.jcp.2005.08.033
10.1023/A:1025896119548
10.1016/j.jcp.2008.10.042
10.1006/jcph.1996.0091
10.1016/j.jcp.2009.07.036
10.1016/0021-9991(89)90183-6
10.1137/1.9781611970876
10.1016/j.jcp.2008.12.038
10.2514/2.1665
10.1142/S0218202503002568
10.1016/j.jcp.2010.03.027
10.1007/s10915-014-9882-5
10.1007/s10915-009-9339-4
10.1006/jcph.2002.7082
10.1051/meca/2013056
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright Elsevier Science Ltd. May 15, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. May 15, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.jcp.2017.02.043
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 402
ExternalDocumentID oai:HAL:hal-01527618v1
10_1016_j_jcp_2017_02_043
S0021999117301468
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c425t-1777398ae320c4a1c61a3cc27a354d5f0e49a05a13a23aa7d18662a5abd3f6e3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398874700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sat Nov 29 15:01:32 EST 2025
Sun Nov 09 08:28:04 EST 2025
Sat Nov 29 03:10:16 EST 2025
Tue Nov 18 22:06:19 EST 2025
Fri Feb 23 02:17:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Space–time spectral analysis
Matrix Power Method
Spectral discontinuous
Aliasing
Aeroacoustics
Finite Difference
Space-time spectral analysis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c425t-1777398ae320c4a1c61a3cc27a354d5f0e49a05a13a23aa7d18662a5abd3f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0408-2467
0000-0002-3043-7911
0000-0002-3785-120X
PQID 2056463896
PQPubID 2047462
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_01527618v1
proquest_journals_2056463896
crossref_citationtrail_10_1016_j_jcp_2017_02_043
crossref_primary_10_1016_j_jcp_2017_02_043
elsevier_sciencedirect_doi_10_1016_j_jcp_2017_02_043
PublicationCentury 2000
PublicationDate 2017-05-15
PublicationDateYYYYMMDD 2017-05-15
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Fosso Pouangué, Deniau, Sicot, Sagaut (br0420) 2010; 229
Vincent, Castonguay, Jameson (br0200) 2011; 47
Golub, Van Loan (br0400) 1996
Cockburn, Lin, Shu (br0060) 1989; 84
Hesthaven, Warburton (br0080) 2008
Sengupta (br0380) 2013
Huynh (br0180) 2007
Bogey, Bailly, Juvé (br0430) 2002; 40
Liang, Jameson, Wang (br0120) 2009; 228
Hu, Hussaini, Rasetarinera (br0250) 1999; 151
Wang, Gao (br0190) 2009; 228
Gaitonde, Visbal (br0320) 1999
Allaneau, Jameson (br0230) 2011; 200
Zhang, Shu (br0260) 2003; 13
Rai, Moin (br0010) 1991; 96
Vincent, Castonguay, Jameson (br0290) 2011; 230
Kopriva, Kolias (br0090) 1996; 125
Bogey, de Cacqueray, Bailly (br0350) 2009; 228
Wang, Liu (br0140) 2002; 179
Sengupta, Dipankar, Sagaut (br0370) 2007; 226
Wang, Liu, May, Jameson (br0110) 2007; 32
Vichnevetsky, Bowles (br0240) 1982
Ramboer, Broeckhoven, Smirnov, Lacor (br0360) 2006; 213
Axelsson (br0390) 1996
Cassagne, Puigt, Boussuge (br0450) 2015
Asthana, Jameson (br0300) 2015; 62
Liu, Vinokur, Wang (br0100) 2006; 216
Wang (br0130) 2002; 178
Huynh, Wang, Vincent (br0220) 2014; 98
Jameson (br0460) 2010; 45
Kannan, Wang (br0270) 2011; 46
Reed, Hill (br0040) 1973
Tam, Webb (br0030) 1993; 107
Cassagne, Boussuge, Villedieu, Puigt, D'Ast, Genot (br0440) 2015
Castonguay, Vincent, Jameson (br0210) 2012; 51
Lele (br0020) 1992; 103
Cockburn, Hou, Shu (br0070) 1990; 54
Liu, Vinokur, Wang (br0170) 2006; 212
Cockburn, Shu (br0050) 1989; 52
Bogey, Bailly (br0310) 2004; 194
Le Bras, Deniau, Bogey, Daviller (br0340) 2015
Wang, Liu (br0150) 2004; 20
Wang, Zang, Liu (br0160) 2004; 194
Van den Abeele, Lacor, Wang (br0280) 2008; 37
Aikens, Dhamankar, Martha, Situ, Blaisdell (br0330) 2014
Cambier, Heib, Plot (br0410) 2013; 14
Liu (10.1016/j.jcp.2017.02.043_br0170) 2006; 212
Tam (10.1016/j.jcp.2017.02.043_br0030) 1993; 107
Vichnevetsky (10.1016/j.jcp.2017.02.043_br0240) 1982
Cassagne (10.1016/j.jcp.2017.02.043_br0440) 2015
Bogey (10.1016/j.jcp.2017.02.043_br0430) 2002; 40
Zhang (10.1016/j.jcp.2017.02.043_br0260) 2003; 13
Allaneau (10.1016/j.jcp.2017.02.043_br0230) 2011; 200
Rai (10.1016/j.jcp.2017.02.043_br0010) 1991; 96
Vincent (10.1016/j.jcp.2017.02.043_br0200) 2011; 47
Hesthaven (10.1016/j.jcp.2017.02.043_br0080) 2008
Le Bras (10.1016/j.jcp.2017.02.043_br0340) 2015
Wang (10.1016/j.jcp.2017.02.043_br0150) 2004; 20
Fosso Pouangué (10.1016/j.jcp.2017.02.043_br0420) 2010; 229
Reed (10.1016/j.jcp.2017.02.043_br0040) 1973
Liu (10.1016/j.jcp.2017.02.043_br0100) 2006; 216
Castonguay (10.1016/j.jcp.2017.02.043_br0210) 2012; 51
Wang (10.1016/j.jcp.2017.02.043_br0140) 2002; 179
Wang (10.1016/j.jcp.2017.02.043_br0190) 2009; 228
Cambier (10.1016/j.jcp.2017.02.043_br0410) 2013; 14
Cockburn (10.1016/j.jcp.2017.02.043_br0050) 1989; 52
Aikens (10.1016/j.jcp.2017.02.043_br0330) 2014
Jameson (10.1016/j.jcp.2017.02.043_br0460) 2010; 45
Lele (10.1016/j.jcp.2017.02.043_br0020) 1992; 103
Vincent (10.1016/j.jcp.2017.02.043_br0290) 2011; 230
Van den Abeele (10.1016/j.jcp.2017.02.043_br0280) 2008; 37
Bogey (10.1016/j.jcp.2017.02.043_br0310) 2004; 194
Ramboer (10.1016/j.jcp.2017.02.043_br0360) 2006; 213
Sengupta (10.1016/j.jcp.2017.02.043_br0370) 2007; 226
Cockburn (10.1016/j.jcp.2017.02.043_br0070) 1990; 54
Huynh (10.1016/j.jcp.2017.02.043_br0180) 2007
Sengupta (10.1016/j.jcp.2017.02.043_br0380) 2013
Wang (10.1016/j.jcp.2017.02.043_br0130) 2002; 178
Kannan (10.1016/j.jcp.2017.02.043_br0270) 2011; 46
Liang (10.1016/j.jcp.2017.02.043_br0120) 2009; 228
Hu (10.1016/j.jcp.2017.02.043_br0250) 1999; 151
Axelsson (10.1016/j.jcp.2017.02.043_br0390) 1996
Golub (10.1016/j.jcp.2017.02.043_br0400) 1996
Kopriva (10.1016/j.jcp.2017.02.043_br0090) 1996; 125
Wang (10.1016/j.jcp.2017.02.043_br0110) 2007; 32
Cockburn (10.1016/j.jcp.2017.02.043_br0060) 1989; 84
Gaitonde (10.1016/j.jcp.2017.02.043_br0320) 1999
Cassagne (10.1016/j.jcp.2017.02.043_br0450)
Bogey (10.1016/j.jcp.2017.02.043_br0350) 2009; 228
Asthana (10.1016/j.jcp.2017.02.043_br0300) 2015; 62
Wang (10.1016/j.jcp.2017.02.043_br0160) 2004; 194
Huynh (10.1016/j.jcp.2017.02.043_br0220) 2014; 98
References_xml – volume: 228
  start-page: 2847
  year: 2009
  end-page: 2858
  ident: br0120
  article-title: Spectral difference method for compressible flow on unstructured grids with mixed elements
  publication-title: J. Comput. Phys.
– volume: 46
  start-page: 314
  year: 2011
  end-page: 328
  ident: br0270
  article-title: LGD2: a variant of the LDG flux formulation for the spectral volume method
  publication-title: J. Sci. Comput.
– volume: 40
  start-page: 235
  year: 2002
  end-page: 243
  ident: br0430
  article-title: Computation of flow noise using source terms in linearized Euler's equations
  publication-title: AIAA J.
– year: 2008
  ident: br0080
  article-title: Nodal Discontinuous Galerkin Methods – Algorithms, Analysis and Applications
– volume: 84
  start-page: 90
  year: 1989
  end-page: 113
  ident: br0060
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems
  publication-title: J. Comput. Phys.
– volume: 45
  start-page: 348
  year: 2010
  end-page: 358
  ident: br0460
  article-title: A proof of the stability of the spectral difference method for all orders of accuracy
  publication-title: J. Sci. Comput.
– year: 2007
  ident: br0180
  article-title: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods
  publication-title: 18th AIAA Computational Fluid Dynamics Conference
– volume: 47
  start-page: 50
  year: 2011
  end-page: 72
  ident: br0200
  article-title: A new class of high-order energy stable flux reconstruction schemes
  publication-title: J. Sci. Comput.
– volume: 228
  start-page: 1447
  year: 2009
  end-page: 1465
  ident: br0350
  article-title: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: 162
  year: 2008
  end-page: 188
  ident: br0280
  article-title: On the stability and accuracy of the spectral difference method
  publication-title: J. Sci. Comput.
– volume: 230
  start-page: 8134
  year: 2011
  end-page: 8154
  ident: br0290
  article-title: Insights from von Neumann analysis of high-order flux reconstruction schemes
  publication-title: J. Comput. Phys.
– volume: 62
  start-page: 913
  year: 2015
  end-page: 944
  ident: br0300
  article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation
  publication-title: J. Sci. Comput.
– volume: 51
  start-page: 224
  year: 2012
  end-page: 256
  ident: br0210
  article-title: A new class of high-order energy stable flux reconstruction schemes for triangular elements
  publication-title: J. Sci. Comput.
– volume: 200
  start-page: 3626
  year: 2011
  end-page: 3636
  ident: br0230
  article-title: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2015
  ident: br0340
  article-title: Development of compressible large-eddy simulations combining high-order schemes and wall modeling
  publication-title: AIAA Aviation 21st AIAA/CEAS Aeroacoustics Conference
– volume: 194
  start-page: 194
  year: 2004
  end-page: 214
  ident: br0310
  article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations
  publication-title: J. Comput. Phys.
– volume: 103
  start-page: 16
  year: 1992
  end-page: 42
  ident: br0020
  article-title: Compact finite difference schemes with spectral-like resolution
  publication-title: J. Comput. Phys.
– volume: 179
  start-page: 665
  year: 2002
  end-page: 697
  ident: br0140
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation
  publication-title: J. Comput. Phys.
– volume: 96
  start-page: 15
  year: 1991
  end-page: 53
  ident: br0010
  article-title: Direct simulations of turbulent flow using finite-difference schemes
  publication-title: J. Comput. Phys.
– volume: 14
  start-page: 159
  year: 2013
  end-page: 174
  ident: br0410
  article-title: The Onera elsA CFD software: input from research and feedback from industry
  publication-title: Mech. Ind.
– year: 2015
  ident: br0440
  article-title: JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry
  publication-title: 50th 3AF International Conference on Applied Aerodynamics
– volume: 216
  start-page: 780
  year: 2006
  end-page: 801
  ident: br0100
  article-title: Spectral difference method for unstructured grids I: basic formulation
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 395
  year: 2003
  end-page: 414
  ident: br0260
  article-title: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations
  publication-title: Math. Methods Appl. Sci.
– year: 1973
  ident: br0040
  article-title: Triangular Mesh Methods for the Neutron Transport Equation
– volume: 228
  start-page: 8161
  year: 2009
  end-page: 8186
  ident: br0190
  article-title: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids
  publication-title: J. Comput. Phys.
– volume: 226
  start-page: 1211
  year: 2007
  end-page: 1218
  ident: br0370
  article-title: Error dynamics: beyond von Neumann analysis
  publication-title: J. Comput. Phys.
– volume: 212
  start-page: 454
  year: 2006
  end-page: 472
  ident: br0170
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems
  publication-title: J. Comput. Phys.
– volume: 98
  start-page: 209
  year: 2014
  end-page: 220
  ident: br0220
  article-title: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids
  publication-title: Comput. Fluids
– volume: 107
  start-page: 262
  year: 1993
  end-page: 281
  ident: br0030
  article-title: Dispersion–relation–preserving finite difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
– year: 1999
  ident: br0320
  article-title: Further development of a Navier–Stokes solution procedure based on higher-order formulas
  publication-title: 37th AIAA Aerospace Sciences Meeting
– volume: 52
  start-page: 411
  year: 1989
  end-page: 435
  ident: br0050
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite method for conservation laws II: general framework
  publication-title: Math. Comput.
– volume: 194
  start-page: 716
  year: 2004
  end-page: 741
  ident: br0160
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems
  publication-title: J. Comput. Phys.
– year: 1982
  ident: br0240
  article-title: Fourier Analysis of Numerical Approximation of Hyperbolic Equations
  publication-title: SIAM Studies in Applied Mathematics
– year: 2013
  ident: br0380
  article-title: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena
– volume: 178
  start-page: 210
  year: 2002
  end-page: 251
  ident: br0130
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation
  publication-title: J. Comput. Phys.
– volume: 20
  start-page: 137
  year: 2004
  end-page: 157
  ident: br0150
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional system and partition optimization
  publication-title: J. Sci. Comput.
– year: 2015
  ident: br0450
  article-title: High-Order Method for a New Generation of Large Eddy Simulation Solver
– volume: 151
  start-page: 921
  year: 1999
  end-page: 946
  ident: br0250
  article-title: An analysis of the discontinuous Galerkin method for wave propagation problems
  publication-title: J. Comput. Phys.
– volume: 229
  start-page: 5090
  year: 2010
  end-page: 5122
  ident: br0420
  article-title: Curvilinear finite-volume schemes using high-order compact interpolation
  publication-title: J. Comput. Phys.
– volume: 32
  start-page: 45
  year: 2007
  end-page: 71
  ident: br0110
  article-title: Spectral difference method for unstructured grids II: extension to the Euler equations
  publication-title: J. Sci. Comput.
– year: 2014
  ident: br0330
  article-title: Equilibrium wall model for large eddy simulations of jets for aeroacoustics
  publication-title: AIAA SciTech, 52nd Aerospace Sciences Meeting
– volume: 213
  start-page: 777
  year: 2006
  end-page: 802
  ident: br0360
  article-title: Optimization of time integration schemes coupled to spatial discretization for use in CAA applications
  publication-title: J. Comput. Phys.
– year: 1996
  ident: br0390
  article-title: Iterative Solution Methods
– volume: 125
  start-page: 244
  year: 1996
  end-page: 261
  ident: br0090
  article-title: A conservative staggered-grid Chebyshev multidomain method for compressible flows
  publication-title: J. Comput. Phys.
– volume: 54
  start-page: 545
  year: 1990
  end-page: 581
  ident: br0070
  article-title: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case
  publication-title: Math. Comput.
– year: 1996
  ident: br0400
  article-title: Matrix Computations
– volume: 230
  start-page: 8134
  issue: 22
  year: 2011
  ident: 10.1016/j.jcp.2017.02.043_br0290
  article-title: Insights from von Neumann analysis of high-order flux reconstruction schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.07.013
– volume: 52
  start-page: 411
  issue: 186
  year: 1989
  ident: 10.1016/j.jcp.2017.02.043_br0050
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite method for conservation laws II: general framework
  publication-title: Math. Comput.
– volume: 226
  start-page: 1211
  year: 2007
  ident: 10.1016/j.jcp.2017.02.043_br0370
  article-title: Error dynamics: beyond von Neumann analysis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.001
– volume: 103
  start-page: 16
  year: 1992
  ident: 10.1016/j.jcp.2017.02.043_br0020
  article-title: Compact finite difference schemes with spectral-like resolution
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90324-R
– volume: 51
  start-page: 224
  year: 2012
  ident: 10.1016/j.jcp.2017.02.043_br0210
  article-title: A new class of high-order energy stable flux reconstruction schemes for triangular elements
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9505-3
– volume: 98
  start-page: 209
  year: 2014
  ident: 10.1016/j.jcp.2017.02.043_br0220
  article-title: High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.12.007
– volume: 194
  start-page: 194
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2017.02.043_br0310
  article-title: A family of low dispersive and low dissipative explicit schemes for flow and noise computations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.003
– volume: 151
  start-page: 921
  year: 1999
  ident: 10.1016/j.jcp.2017.02.043_br0250
  article-title: An analysis of the discontinuous Galerkin method for wave propagation problems
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1999.6227
– year: 2014
  ident: 10.1016/j.jcp.2017.02.043_br0330
  article-title: Equilibrium wall model for large eddy simulations of jets for aeroacoustics
– volume: 194
  start-page: 716
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2017.02.043_br0160
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.09.012
– year: 2007
  ident: 10.1016/j.jcp.2017.02.043_br0180
  article-title: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods
– volume: 212
  start-page: 454
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2017.02.043_br0170
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.06.024
– volume: 46
  start-page: 314
  year: 2011
  ident: 10.1016/j.jcp.2017.02.043_br0270
  article-title: LGD2: a variant of the LDG flux formulation for the spectral volume method
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9391-0
– volume: 200
  start-page: 3626
  year: 2011
  ident: 10.1016/j.jcp.2017.02.043_br0230
  article-title: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2011.08.019
– year: 1996
  ident: 10.1016/j.jcp.2017.02.043_br0400
– volume: 54
  start-page: 545
  year: 1990
  ident: 10.1016/j.jcp.2017.02.043_br0070
  article-title: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case
  publication-title: Math. Comput.
– volume: 37
  start-page: 162
  year: 2008
  ident: 10.1016/j.jcp.2017.02.043_br0280
  article-title: On the stability and accuracy of the spectral difference method
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-008-9201-0
– volume: 216
  start-page: 780
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2017.02.043_br0100
  article-title: Spectral difference method for unstructured grids I: basic formulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.024
– volume: 32
  start-page: 45
  year: 2007
  ident: 10.1016/j.jcp.2017.02.043_br0110
  article-title: Spectral difference method for unstructured grids II: extension to the Euler equations
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-006-9113-9
– volume: 96
  start-page: 15
  issue: 1
  year: 1991
  ident: 10.1016/j.jcp.2017.02.043_br0010
  article-title: Direct simulations of turbulent flow using finite-difference schemes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(91)90264-L
– volume: 107
  start-page: 262
  issue: 2
  year: 1993
  ident: 10.1016/j.jcp.2017.02.043_br0030
  article-title: Dispersion–relation–preserving finite difference schemes for computational acoustics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1142
– volume: 178
  start-page: 210
  issue: 1
  year: 2002
  ident: 10.1016/j.jcp.2017.02.043_br0130
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7041
– volume: 47
  start-page: 50
  issue: 1
  year: 2011
  ident: 10.1016/j.jcp.2017.02.043_br0200
  article-title: A new class of high-order energy stable flux reconstruction schemes
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-010-9420-z
– year: 2013
  ident: 10.1016/j.jcp.2017.02.043_br0380
– volume: 213
  start-page: 777
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2017.02.043_br0360
  article-title: Optimization of time integration schemes coupled to spatial discretization for use in CAA applications
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.08.033
– volume: 20
  start-page: 137
  year: 2004
  ident: 10.1016/j.jcp.2017.02.043_br0150
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids III: one dimensional system and partition optimization
  publication-title: J. Sci. Comput.
  doi: 10.1023/A:1025896119548
– year: 1999
  ident: 10.1016/j.jcp.2017.02.043_br0320
  article-title: Further development of a Navier–Stokes solution procedure based on higher-order formulas
– volume: 228
  start-page: 1447
  issue: 5
  year: 2009
  ident: 10.1016/j.jcp.2017.02.043_br0350
  article-title: A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.10.042
– ident: 10.1016/j.jcp.2017.02.043_br0450
– volume: 125
  start-page: 244
  issue: 1
  year: 1996
  ident: 10.1016/j.jcp.2017.02.043_br0090
  article-title: A conservative staggered-grid Chebyshev multidomain method for compressible flows
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0091
– volume: 228
  start-page: 8161
  issue: 21
  year: 2009
  ident: 10.1016/j.jcp.2017.02.043_br0190
  article-title: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.07.036
– volume: 84
  start-page: 90
  year: 1989
  ident: 10.1016/j.jcp.2017.02.043_br0060
  article-title: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90183-6
– year: 1982
  ident: 10.1016/j.jcp.2017.02.043_br0240
  article-title: Fourier Analysis of Numerical Approximation of Hyperbolic Equations
  doi: 10.1137/1.9781611970876
– volume: 228
  start-page: 2847
  issue: 8
  year: 2009
  ident: 10.1016/j.jcp.2017.02.043_br0120
  article-title: Spectral difference method for compressible flow on unstructured grids with mixed elements
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.038
– volume: 40
  start-page: 235
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2017.02.043_br0430
  article-title: Computation of flow noise using source terms in linearized Euler's equations
  publication-title: AIAA J.
  doi: 10.2514/2.1665
– volume: 13
  start-page: 395
  issue: 3
  year: 2003
  ident: 10.1016/j.jcp.2017.02.043_br0260
  article-title: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1142/S0218202503002568
– volume: 229
  start-page: 5090
  issue: 13
  year: 2010
  ident: 10.1016/j.jcp.2017.02.043_br0420
  article-title: Curvilinear finite-volume schemes using high-order compact interpolation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.03.027
– year: 2015
  ident: 10.1016/j.jcp.2017.02.043_br0440
  article-title: JAGUAR: a new CFD code dedicated to massively parallel high-order LES computations on complex geometry
– year: 2008
  ident: 10.1016/j.jcp.2017.02.043_br0080
– year: 1996
  ident: 10.1016/j.jcp.2017.02.043_br0390
– volume: 62
  start-page: 913
  issue: 3
  year: 2015
  ident: 10.1016/j.jcp.2017.02.043_br0300
  article-title: High-order flux reconstruction schemes with minimal dispersion and dissipation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9882-5
– volume: 45
  start-page: 348
  year: 2010
  ident: 10.1016/j.jcp.2017.02.043_br0460
  article-title: A proof of the stability of the spectral difference method for all orders of accuracy
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-009-9339-4
– volume: 179
  start-page: 665
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2017.02.043_br0140
  article-title: Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2002.7082
– year: 1973
  ident: 10.1016/j.jcp.2017.02.043_br0040
– year: 2015
  ident: 10.1016/j.jcp.2017.02.043_br0340
  article-title: Development of compressible large-eddy simulations combining high-order schemes and wall modeling
– volume: 14
  start-page: 159
  issue: 3
  year: 2013
  ident: 10.1016/j.jcp.2017.02.043_br0410
  article-title: The Onera elsA CFD software: input from research and feedback from industry
  publication-title: Mech. Ind.
  doi: 10.1051/meca/2013056
SSID ssj0008548
Score 2.430654
Snippet The spectral analysis is a basic tool to characterise the behaviour of any convection scheme. By nature, the solution projected onto the Fourier basis enables...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 379
SubjectTerms Aeroacoustics
Aliasing
Computational physics
Convection
Dissipation
Energy dissipation
Engineering Sciences
Finite Difference
Finite difference method
Finite element analysis
Fluids mechanics
Fourier transforms
Linear equations
Mathematical analysis
Matrix Power Method
Mechanics
Space–time spectral analysis
Spectra
Spectral discontinuous
Studies
Time integration
Title Revisiting the spectral analysis for high-order spectral discontinuous methods
URI https://dx.doi.org/10.1016/j.jcp.2017.02.043
https://www.proquest.com/docview/2056463896
https://hal.science/hal-01527618
Volume 337
WOSCitedRecordID wos000398874700019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwMvfCM6BooQT0ie8u3ksYKNblRVBdXUN8txbdqqpFPTVPvv9q9x_krWoU3jgZcoSm0r8f16d7bvfofQJ5mSGYhd4ozLGIPFz3GRFRyDsAsR5n4R64P2iyEZjbLpNB93OtcuF2a3ImWZXV3ll_9V1PAMhK1SZ_9B3M2g8ADuQehwBbHD9UGC_6HzxbcuDUqnUm40I4ClH1GBhYqlGGvazbaBStBdq8IRtQqLNaWlqzucV66LQbiNRLM90njnF6ycs43L-gAntwHguF780lr_W62qHdW_RdunqkSt4TNlylY3-wTwMlVtCsCfC1Zi5Wrr432yXuxtWoAhVHynSbuTZs3-Tc2sQkVyU7nrWBhl7Oc-DonJxXTaOjIcMVbfRqYSjTXdsU7e_tsqmA2K5fGSK4bSgGiWVsMOtc_APej_pOOvp3R4Nvq-_-uNsMVBfwjXOVthX9UEToNsB8vvg5AkedZFB_2zk-l54wxkSWycAft57mBdhxjeep-7XKNHcxWje8tV0P7P5Dl6amXv9Q3gXqCOKF-iZ3YR41kTUb1CoxZ_HuDPc_DyHP48wJ_X4q9tsIc_z-LvNZqcnky-DLAt2oE5qP8tDgghUZ4xEYU-j1nA04BFnIeERUk8S6Qv4pz5CQsiFkaMkZliXAxZwopZJFMRvUHdcl2Kt8gLMhnPeMhCnkdwI1laSJZkEgyyhEWK7CHfTRflltBe1VVZURe5uKQww1TNMPVDCjPcQ5-bLpeGzeW-xrGTAbXuqHEzKeDqvm4fQV7N8Iq-HRBD1bMWLz105MRJre6oYJAkjdUKIj18yBjv0JP2r3WEuttNLd6jx3y3XVSbDxaIfwCOPsHw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+the+spectral+analysis+for+high-order+spectral+discontinuous+methods&rft.jtitle=Journal+of+computational+physics&rft.au=Vanharen%2C+Julien&rft.au=Puigt%2C+Guillaume&rft.au=Vasseur%2C+Xavier&rft.au=Boussuge%2C+Jean-Fran%C3%A7ois&rft.date=2017-05-15&rft.pub=Elsevier&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=337&rft.spage=379&rft.epage=402&rft_id=info:doi/10.1016%2Fj.jcp.2017.02.043&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01527618v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon