Automated labeling for unsupervised neural networks: a hierarchical approach

In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on neural networks Ročník 10; číslo 1; s. 199 - 203
Hlavní autoři: Tagliaferri, R., Capuano, N., Gargiulo, G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.01.1999
Institute of Electrical and Electronics Engineers
Témata:
ISSN:1045-9227
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on a multilayer organization of neural units. Both methods are a substantial improvement with respect to the most important unsupervised neural algorithms existing in the literature. Experimental results are shown to illustrate clustering performance of the systems.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Correspondence-1
ISSN:1045-9227
DOI:10.1109/72.737509