Automated labeling for unsupervised neural networks: a hierarchical approach
In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on neural networks Jg. 10; H. 1; S. 199 - 203 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.01.1999
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1045-9227 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on a multilayer organization of neural units. Both methods are a substantial improvement with respect to the most important unsupervised neural algorithms existing in the literature. Experimental results are shown to illustrate clustering performance of the systems. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Correspondence-1 |
| ISSN: | 1045-9227 |
| DOI: | 10.1109/72.737509 |