Automated labeling for unsupervised neural networks: a hierarchical approach

In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on neural networks Jg. 10; H. 1; S. 199 - 203
Hauptverfasser: Tagliaferri, R., Capuano, N., Gargiulo, G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.01.1999
Institute of Electrical and Electronics Engineers
Schlagworte:
ISSN:1045-9227
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a hybrid system and a hierarchical neural-net approaches are proposed to solve the automatic labeling problem for unsupervised clustering. The first method involves the application of nonneural clustering algorithms directly to the output of a neural net; and the second one is based on a multilayer organization of neural units. Both methods are a substantial improvement with respect to the most important unsupervised neural algorithms existing in the literature. Experimental results are shown to illustrate clustering performance of the systems.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Correspondence-1
ISSN:1045-9227
DOI:10.1109/72.737509