Optimal constraint-based decision tree induction from itemset lattices

In this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding optimal decision trees in a wide range of applications by post-processing a set of patterns: we use local...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data mining and knowledge discovery Ročník 21; číslo 1; s. 9 - 51
Hlavní autori: Nijssen, Siegfried, Fromont, Elisa
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.07.2010
Springer Nature B.V
Springer
Predmet:
ISSN:1384-5810, 1573-756X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding optimal decision trees in a wide range of applications by post-processing a set of patterns: we use local patterns to construct a global model. We exploit the connection between constraints in pattern mining and constraints in decision tree induction to develop a framework for categorizing decision tree mining constraints. This framework allows us to determine which model constraints can be pushed deeply into the pattern mining process, and allows us to improve the state-of-the-art of optimal decision tree induction.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1384-5810
1573-756X
DOI:10.1007/s10618-010-0174-x