Optimal constraint-based decision tree induction from itemset lattices
In this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding optimal decision trees in a wide range of applications by post-processing a set of patterns: we use local...
Uložené v:
| Vydané v: | Data mining and knowledge discovery Ročník 21; číslo 1; s. 9 - 51 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Boston
Springer US
01.07.2010
Springer Nature B.V Springer |
| Predmet: | |
| ISSN: | 1384-5810, 1573-756X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article we show that there is a strong connection between decision tree learning and local pattern mining. This connection allows us to solve the computationally hard problem of finding
optimal
decision trees in a wide range of applications by post-processing a set of patterns: we use local patterns to construct a global model. We exploit the connection between constraints in pattern mining and constraints in decision tree induction to develop a framework for categorizing decision tree mining constraints. This framework allows us to determine which model constraints can be pushed deeply into the pattern mining process, and allows us to improve the state-of-the-art of optimal decision tree induction. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| ISSN: | 1384-5810 1573-756X |
| DOI: | 10.1007/s10618-010-0174-x |