Combinatorial structure and randomized subexponential algorithms for infinite games

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 349; H. 3; S. 347 - 360
Hauptverfasser: Björklund, Henrik, Vorobyov, Sergei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.12.2005
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certain discrete structures. We introduce new classes of recursively local-global (RLG) and partial recursively local-global (PRLG) functions, and show that strategy evaluation functions for simple stochastic, mean payoff, and parity games belong to these classes. In this setting, we suggest randomized subexponential algorithms appropriate for RLG- and PRLG-function optimization. We show that the subexponential algorithms for combinatorial linear programming, due to Kalai and Matoušek, Sharir, Welzl, can be adapted for optimizing the RLG- and PRLG-functions.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2005.07.041