Combinatorial structure and randomized subexponential algorithms for infinite games

The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 349; číslo 3; s. 347 - 360
Hlavní autoři: Björklund, Henrik, Vorobyov, Sergei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 16.12.2005
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The complexity of solving infinite games, including parity, mean payoff, and simple stochastic, is an important open problem in verification, automata, and complexity theory. In this paper, we develop an abstract setting for studying and solving such games, based on function optimization over certain discrete structures. We introduce new classes of recursively local-global (RLG) and partial recursively local-global (PRLG) functions, and show that strategy evaluation functions for simple stochastic, mean payoff, and parity games belong to these classes. In this setting, we suggest randomized subexponential algorithms appropriate for RLG- and PRLG-function optimization. We show that the subexponential algorithms for combinatorial linear programming, due to Kalai and Matoušek, Sharir, Welzl, can be adapted for optimizing the RLG- and PRLG-functions.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2005.07.041