Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing
Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties,...
Uloženo v:
| Vydáno v: | Environmental science & technology Ročník 54; číslo 11; s. 6978 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
02.06.2020
|
| ISSN: | 1520-5851, 1520-5851 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of
-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes. |
|---|---|
| AbstractList | Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of
-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes. Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of m-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of m-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes. |
| Author | Peng, Lu Elfa Guo, Hao Yang, Zhe Yao, Zhikan Tang, Chuyang Y |
| Author_xml | – sequence: 1 givenname: Lu Elfa surname: Peng fullname: Peng, Lu Elfa organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China – sequence: 2 givenname: Zhikan surname: Yao fullname: Yao, Zhikan organization: College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 3 givenname: Zhe orcidid: 0000-0003-0753-3902 surname: Yang fullname: Yang, Zhe organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China – sequence: 4 givenname: Hao orcidid: 0000-0002-0688-5431 surname: Guo fullname: Guo, Hao organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China – sequence: 5 givenname: Chuyang Y orcidid: 0000-0002-7932-6462 surname: Tang fullname: Tang, Chuyang Y organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32396337$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNUMtOwzAQtBCIPuDMDfnIJcXeJE3MDQqFSkVUtJwrx9m0Rkkc7ASp_8BH40KROM2u5rGrGZDj2tRIyAVnI86AX0vlRujaEVOMR5AckT6PgQVxGvPjf3OPDJx7Z4xByNJT0gshFOMwTPrk6147h6rV9Ya2W6SvpkRqCrrsMtda2fql_iGejW22pjSbHZV1TpfYSE9rzy6sadC2Gt3euNrqmk51WdGJqRrjtI9YmHInK537FKwyK2t0Nz4B90dnjt5hqfHTL2fkpJClw_MDDsnb9GE1eQrmL4-zye08UBFEbZDKVAklEgkZigR5nBSQyJiNI2BSFlAkBRMxz0KMVQ6pSCMuICxyhR5EnMOQXP3mNtZ8dL6_daWdwrL0n5nOrSFiEHlTCl56eZB2WYX5urG6kna3_msQvgEgMHb1 |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2024_101932 crossref_primary_10_1016_j_cclet_2025_111251 crossref_primary_10_1016_j_memsci_2023_121956 crossref_primary_10_1016_j_jece_2024_112298 crossref_primary_10_1016_j_memsci_2022_120465 crossref_primary_10_1016_j_memsci_2023_121711 crossref_primary_10_1016_j_desal_2022_115909 crossref_primary_10_1016_j_desal_2021_114939 crossref_primary_10_1016_j_memsci_2024_123614 crossref_primary_10_1016_j_carbon_2021_09_021 crossref_primary_10_1016_j_memsci_2023_122003 crossref_primary_10_1016_j_memsci_2022_120981 crossref_primary_10_1016_j_memsci_2023_121555 crossref_primary_10_1007_s11705_024_2510_5 crossref_primary_10_1016_j_chemosphere_2022_136634 crossref_primary_10_1016_j_memsci_2024_123101 crossref_primary_10_1016_j_seppur_2025_134839 crossref_primary_10_1039_D4EW01011F crossref_primary_10_1016_j_memsci_2023_122012 crossref_primary_10_1038_s43586_023_00287_y crossref_primary_10_1016_j_memsci_2022_120593 crossref_primary_10_1016_j_memsci_2024_122493 crossref_primary_10_1016_j_watres_2022_118888 crossref_primary_10_1016_j_desal_2022_116033 crossref_primary_10_1016_j_surfin_2024_104693 crossref_primary_10_1016_j_memsci_2021_119765 crossref_primary_10_1016_j_cclet_2024_110793 crossref_primary_10_1016_j_memsci_2021_119801 crossref_primary_10_1016_j_seppur_2025_135076 crossref_primary_10_1016_j_desal_2023_117083 crossref_primary_10_1016_j_memsci_2023_121969 crossref_primary_10_1016_j_memsci_2021_120112 crossref_primary_10_1016_j_desal_2024_118072 crossref_primary_10_1016_j_seppur_2025_132520 crossref_primary_10_1016_j_memsci_2021_120110 crossref_primary_10_1002_app_55271 crossref_primary_10_1016_j_memsci_2023_121687 crossref_primary_10_1016_j_chemosphere_2022_136367 crossref_primary_10_1016_j_memsci_2020_118829 crossref_primary_10_1016_j_seppur_2023_124078 crossref_primary_10_1016_j_desal_2023_116546 crossref_primary_10_1016_j_surfin_2024_104461 crossref_primary_10_1002_inf2_70054 crossref_primary_10_1016_j_desal_2024_117896 crossref_primary_10_1016_j_seppur_2022_121134 crossref_primary_10_1016_j_desal_2023_117155 crossref_primary_10_1016_j_jece_2025_117402 crossref_primary_10_1016_j_desal_2022_116020 crossref_primary_10_1016_j_mtchem_2025_102761 crossref_primary_10_1016_j_surfin_2025_106577 crossref_primary_10_1002_app_52692 crossref_primary_10_1016_j_memsci_2022_120966 crossref_primary_10_1016_j_memsci_2023_121538 crossref_primary_10_1016_j_seppur_2025_132197 crossref_primary_10_1016_j_memsci_2025_124294 crossref_primary_10_1016_j_memsci_2025_124334 crossref_primary_10_1016_j_cej_2022_137143 crossref_primary_10_1016_j_memsci_2023_122104 crossref_primary_10_1002_adfm_202310218 crossref_primary_10_1016_j_desal_2022_115724 crossref_primary_10_1021_acs_est_5c01365 crossref_primary_10_1016_j_desal_2022_116134 crossref_primary_10_1016_j_desal_2025_118958 crossref_primary_10_1016_j_desal_2023_117029 crossref_primary_10_1016_j_watres_2024_121395 crossref_primary_10_1016_j_desal_2024_117422 crossref_primary_10_1016_j_psep_2022_06_045 crossref_primary_10_1016_j_seppur_2022_121810 crossref_primary_10_1073_pnas_2019891118 crossref_primary_10_1016_j_jwpe_2022_103251 crossref_primary_10_1016_j_desal_2021_115283 crossref_primary_10_1016_j_seppur_2024_130831 crossref_primary_10_1016_j_desal_2022_115615 crossref_primary_10_1007_s13726_023_01175_8 crossref_primary_10_1002_adfm_202514394 crossref_primary_10_1016_j_desal_2024_117957 crossref_primary_10_1016_j_seppur_2023_124131 crossref_primary_10_1016_j_memsci_2021_119395 crossref_primary_10_1016_j_cej_2021_129080 crossref_primary_10_1016_j_eesus_2025_02_001 crossref_primary_10_1016_j_memsci_2021_119154 crossref_primary_10_1016_j_seppur_2024_127669 crossref_primary_10_1016_j_cej_2025_160132 crossref_primary_10_1016_j_jiec_2023_12_063 crossref_primary_10_1016_j_desal_2024_118143 crossref_primary_10_1016_j_progpolymsci_2021_101450 crossref_primary_10_1016_j_memsci_2022_120706 crossref_primary_10_1016_j_desal_2025_119196 crossref_primary_10_1016_j_polymer_2023_126446 crossref_primary_10_1002_adfm_202414490 crossref_primary_10_1016_j_memsci_2024_123533 crossref_primary_10_1016_j_memsci_2023_122332 crossref_primary_10_1016_j_memsci_2025_124227 crossref_primary_10_3390_membranes13060549 crossref_primary_10_3390_membranes12100967 crossref_primary_10_1016_j_jece_2022_107860 crossref_primary_10_1016_j_desal_2024_117845 crossref_primary_10_1016_j_desal_2023_116876 crossref_primary_10_1016_j_desal_2024_118136 crossref_primary_10_1016_j_watres_2023_120255 crossref_primary_10_1016_j_desal_2024_118277 crossref_primary_10_1016_j_memsci_2023_121407 crossref_primary_10_1007_s11696_025_03948_2 crossref_primary_10_1016_j_desal_2021_115261 crossref_primary_10_1016_j_memsci_2024_123369 crossref_primary_10_1016_j_memlet_2022_100036 crossref_primary_10_1016_j_memlet_2023_100063 crossref_primary_10_1016_j_memsci_2022_121076 crossref_primary_10_1016_j_memsci_2021_119173 crossref_primary_10_1016_j_memsci_2022_121070 crossref_primary_10_1016_j_watres_2025_124056 crossref_primary_10_1016_j_desal_2024_117616 crossref_primary_10_1016_j_desal_2023_116509 crossref_primary_10_1016_j_memsci_2021_119450 crossref_primary_10_3390_membranes14090190 crossref_primary_10_1038_s41467_024_53042_6 crossref_primary_10_1016_j_seppur_2023_125401 crossref_primary_10_1016_j_seppur_2022_121547 crossref_primary_10_1016_j_watres_2024_123063 crossref_primary_10_1016_j_memsci_2021_119699 crossref_primary_10_1021_acs_est_5c06050 crossref_primary_10_1016_j_watres_2022_118264 crossref_primary_10_1016_j_desal_2025_119297 crossref_primary_10_1038_s41467_024_55595_y crossref_primary_10_1016_j_memsci_2023_121854 crossref_primary_10_1016_j_memsci_2024_122869 crossref_primary_10_1016_j_memsci_2024_122865 crossref_primary_10_1007_s11783_022_1550_7 crossref_primary_10_1007_s10965_022_03126_y crossref_primary_10_1016_j_seppur_2021_118406 crossref_primary_10_1016_j_jece_2021_106958 crossref_primary_10_1016_j_memsci_2021_119586 crossref_primary_10_3390_membranes15040118 crossref_primary_10_1016_j_seppur_2022_120648 crossref_primary_10_1016_j_seppur_2022_120886 crossref_primary_10_1016_j_jece_2024_115136 crossref_primary_10_1016_j_memsci_2020_118775 crossref_primary_10_1016_j_memsci_2023_122165 crossref_primary_10_1016_j_memsci_2024_123278 crossref_primary_10_1016_j_cej_2024_149492 crossref_primary_10_1016_j_desal_2023_116801 crossref_primary_10_1021_acs_jpcc_4c04669 crossref_primary_10_1016_j_memsci_2024_123393 crossref_primary_10_1016_j_desal_2023_116521 crossref_primary_10_1016_j_desal_2024_117514 crossref_primary_10_1016_j_memsci_2021_119871 crossref_primary_10_1016_j_desal_2025_118989 crossref_primary_10_1016_j_chemosphere_2023_139556 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.est.0c01427 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1520-5851 |
| ExternalDocumentID | 32396337 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 NPM PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 W1F WH7 XSW XZL YZZ ZCA 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-c424t-8a8c9c97a2be97e157f27a506420aaf2f7f0951b3e5cd289841923fdce92395d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 184 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538420500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5851 |
| IngestDate | Fri Jul 11 08:42:26 EDT 2025 Thu Apr 03 06:58:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-8a8c9c97a2be97e157f27a506420aaf2f7f0951b3e5cd289841923fdce92395d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0688-5431 0000-0002-7932-6462 0000-0003-0753-3902 |
| PMID | 32396337 |
| PQID | 2402441982 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2402441982 pubmed_primary_32396337 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-06-02 |
| PublicationDateYYYYMMDD | 2020-06-02 |
| PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Environmental science & technology |
| PublicationTitleAlternate | Environ Sci Technol |
| PublicationYear | 2020 |
| SSID | ssj0002308 |
| Score | 2.6582103 |
| Snippet | Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6978 |
| Title | Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32396337 https://www.proquest.com/docview/2402441982 |
| Volume | 54 |
| WOSCitedRecordID | wos000538420500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UetCDS7VaN0bwGm0mnczEi7i0KNhS3OitTGaBQpvUpgr-B3-076Wp9SIIXpLAZBZ4b968bb5HyIkMfa055vlZHnr12FhP6hi-XKx956QyOU7By71ot2W3G3UKh1tWpFXOZGIuqE2q0Ud-hlEAOLojyS5Grx5WjcLoalFCY5GUAlBlkKtFd44WDup1fhWOg4mE4a9vaB__TOnsFKeoabARmPhdv8zPmeb6f1e4QdYKDZNeTllikyzYpExWf-AOlkmlMb_eBr8W-zvbIp83GJ7XmApNQTOkD-nA0tRRFC85jC1Nk7yhlQJ9co88VYmhj3YKIQ6tHfTujxGmFTtiWVDa7A-GFAUPJohZ2kkHH2rYNzCKHYKxDsL2HEawOOldRq8sqMXo5tgmz83G0_WtV9Rr8HSd1SeeVFJHOhKKxTYS1ufCMaEQEY_VlHLMCYcKXRxYrg0YehIj0IEz2sIr4oZVyFKSJnaX0DDyQXOQhiuJeP81GRkUTs53HFhf8yo5ntGgB_sBgxyw2vQt682pUCU7U0L2RlPgjl4A04RBIPb-0HufrDA0rdHhwg5IyYE0sIdkWb9P-tn4KGc0eLY7rS_LYuBK |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+the+Role+of+Substrate+on+the+Morphology+and+Separation+Properties+of+Thin+Film+Composite+Polyamide+Membranes%3A+Seeing+Is+Believing&rft.jtitle=Environmental+science+%26+technology&rft.au=Peng%2C+Lu+Elfa&rft.au=Yao%2C+Zhikan&rft.au=Yang%2C+Zhe&rft.au=Guo%2C+Hao&rft.date=2020-06-02&rft.issn=1520-5851&rft.eissn=1520-5851&rft.volume=54&rft.issue=11&rft.spage=6978&rft_id=info:doi/10.1021%2Facs.est.0c01427&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon |