Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing

Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental science & technology Ročník 54; číslo 11; s. 6978
Hlavní autori: Peng, Lu Elfa, Yao, Zhikan, Yang, Zhe, Guo, Hao, Tang, Chuyang Y
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 02.06.2020
ISSN:1520-5851, 1520-5851
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of -phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.
AbstractList Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of m-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of m-phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.
Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the underlining mechanisms and the effects on membrane separation performance remain controversial. To dissect the exact role of pore properties, we synthesized TFC polyamide membranes on polycarbonate substrates with cylindrical track-etched pores (PCTE) of well-defined pore size ranging from 10 to 800 nm. Leaf-like roughness features were most prominent for polyamide films formed on substrates of intermediate pore sizes (80 and 100 nm). Smaller pores inhibited leaf-like features as a result of insufficient storage of -phenylenediamine (MPD) monomers for the interfacial reaction, whereas larger pores resulted in diminished surface roughness due to the lack of confinement to the interfacially degassed nanobubbles. Substrate porosity plays a critical role on membrane water permeability, while smaller pores with greater pore density are favored to improve membrane rejection. TFC polyamide membranes prepared on sponge-like poly(ether sulfone) and polysulfone substrates exhibit better water permeability and salt rejection compared to the PCTE-TFC membranes thanks to the simultaneously enhanced confinement and MPD storage effects. The mechanistic insights gained in this study reveal the huge potential of substrate design toward high-performance TFC RO membranes.
Author Peng, Lu Elfa
Guo, Hao
Yang, Zhe
Yao, Zhikan
Tang, Chuyang Y
Author_xml – sequence: 1
  givenname: Lu Elfa
  surname: Peng
  fullname: Peng, Lu Elfa
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
– sequence: 2
  givenname: Zhikan
  surname: Yao
  fullname: Yao, Zhikan
  organization: College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0003-0753-3902
  surname: Yang
  fullname: Yang, Zhe
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
– sequence: 4
  givenname: Hao
  orcidid: 0000-0002-0688-5431
  surname: Guo
  fullname: Guo, Hao
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
– sequence: 5
  givenname: Chuyang Y
  orcidid: 0000-0002-7932-6462
  surname: Tang
  fullname: Tang, Chuyang Y
  organization: Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32396337$$D View this record in MEDLINE/PubMed
BookMark eNpNUMtOwzAQtBCIPuDMDfnIJcXeJE3MDQqFSkVUtJwrx9m0Rkkc7ASp_8BH40KROM2u5rGrGZDj2tRIyAVnI86AX0vlRujaEVOMR5AckT6PgQVxGvPjf3OPDJx7Z4xByNJT0gshFOMwTPrk6147h6rV9Ya2W6SvpkRqCrrsMtda2fql_iGejW22pjSbHZV1TpfYSE9rzy6sadC2Gt3euNrqmk51WdGJqRrjtI9YmHInK537FKwyK2t0Nz4B90dnjt5hqfHTL2fkpJClw_MDDsnb9GE1eQrmL4-zye08UBFEbZDKVAklEgkZigR5nBSQyJiNI2BSFlAkBRMxz0KMVQ6pSCMuICxyhR5EnMOQXP3mNtZ8dL6_daWdwrL0n5nOrSFiEHlTCl56eZB2WYX5urG6kna3_msQvgEgMHb1
CitedBy_id crossref_primary_10_1016_j_rineng_2024_101932
crossref_primary_10_1016_j_cclet_2025_111251
crossref_primary_10_1016_j_memsci_2023_121956
crossref_primary_10_1016_j_jece_2024_112298
crossref_primary_10_1016_j_memsci_2022_120465
crossref_primary_10_1016_j_memsci_2023_121711
crossref_primary_10_1016_j_desal_2022_115909
crossref_primary_10_1016_j_desal_2021_114939
crossref_primary_10_1016_j_memsci_2024_123614
crossref_primary_10_1016_j_carbon_2021_09_021
crossref_primary_10_1016_j_memsci_2023_122003
crossref_primary_10_1016_j_memsci_2022_120981
crossref_primary_10_1016_j_memsci_2023_121555
crossref_primary_10_1007_s11705_024_2510_5
crossref_primary_10_1016_j_chemosphere_2022_136634
crossref_primary_10_1016_j_memsci_2024_123101
crossref_primary_10_1016_j_seppur_2025_134839
crossref_primary_10_1039_D4EW01011F
crossref_primary_10_1016_j_memsci_2023_122012
crossref_primary_10_1038_s43586_023_00287_y
crossref_primary_10_1016_j_memsci_2022_120593
crossref_primary_10_1016_j_memsci_2024_122493
crossref_primary_10_1016_j_watres_2022_118888
crossref_primary_10_1016_j_desal_2022_116033
crossref_primary_10_1016_j_surfin_2024_104693
crossref_primary_10_1016_j_memsci_2021_119765
crossref_primary_10_1016_j_cclet_2024_110793
crossref_primary_10_1016_j_memsci_2021_119801
crossref_primary_10_1016_j_seppur_2025_135076
crossref_primary_10_1016_j_desal_2023_117083
crossref_primary_10_1016_j_memsci_2023_121969
crossref_primary_10_1016_j_memsci_2021_120112
crossref_primary_10_1016_j_desal_2024_118072
crossref_primary_10_1016_j_seppur_2025_132520
crossref_primary_10_1016_j_memsci_2021_120110
crossref_primary_10_1002_app_55271
crossref_primary_10_1016_j_memsci_2023_121687
crossref_primary_10_1016_j_chemosphere_2022_136367
crossref_primary_10_1016_j_memsci_2020_118829
crossref_primary_10_1016_j_seppur_2023_124078
crossref_primary_10_1016_j_desal_2023_116546
crossref_primary_10_1016_j_surfin_2024_104461
crossref_primary_10_1002_inf2_70054
crossref_primary_10_1016_j_desal_2024_117896
crossref_primary_10_1016_j_seppur_2022_121134
crossref_primary_10_1016_j_desal_2023_117155
crossref_primary_10_1016_j_jece_2025_117402
crossref_primary_10_1016_j_desal_2022_116020
crossref_primary_10_1016_j_mtchem_2025_102761
crossref_primary_10_1016_j_surfin_2025_106577
crossref_primary_10_1002_app_52692
crossref_primary_10_1016_j_memsci_2022_120966
crossref_primary_10_1016_j_memsci_2023_121538
crossref_primary_10_1016_j_seppur_2025_132197
crossref_primary_10_1016_j_memsci_2025_124294
crossref_primary_10_1016_j_memsci_2025_124334
crossref_primary_10_1016_j_cej_2022_137143
crossref_primary_10_1016_j_memsci_2023_122104
crossref_primary_10_1002_adfm_202310218
crossref_primary_10_1016_j_desal_2022_115724
crossref_primary_10_1021_acs_est_5c01365
crossref_primary_10_1016_j_desal_2022_116134
crossref_primary_10_1016_j_desal_2025_118958
crossref_primary_10_1016_j_desal_2023_117029
crossref_primary_10_1016_j_watres_2024_121395
crossref_primary_10_1016_j_desal_2024_117422
crossref_primary_10_1016_j_psep_2022_06_045
crossref_primary_10_1016_j_seppur_2022_121810
crossref_primary_10_1073_pnas_2019891118
crossref_primary_10_1016_j_jwpe_2022_103251
crossref_primary_10_1016_j_desal_2021_115283
crossref_primary_10_1016_j_seppur_2024_130831
crossref_primary_10_1016_j_desal_2022_115615
crossref_primary_10_1007_s13726_023_01175_8
crossref_primary_10_1002_adfm_202514394
crossref_primary_10_1016_j_desal_2024_117957
crossref_primary_10_1016_j_seppur_2023_124131
crossref_primary_10_1016_j_memsci_2021_119395
crossref_primary_10_1016_j_cej_2021_129080
crossref_primary_10_1016_j_eesus_2025_02_001
crossref_primary_10_1016_j_memsci_2021_119154
crossref_primary_10_1016_j_seppur_2024_127669
crossref_primary_10_1016_j_cej_2025_160132
crossref_primary_10_1016_j_jiec_2023_12_063
crossref_primary_10_1016_j_desal_2024_118143
crossref_primary_10_1016_j_progpolymsci_2021_101450
crossref_primary_10_1016_j_memsci_2022_120706
crossref_primary_10_1016_j_desal_2025_119196
crossref_primary_10_1016_j_polymer_2023_126446
crossref_primary_10_1002_adfm_202414490
crossref_primary_10_1016_j_memsci_2024_123533
crossref_primary_10_1016_j_memsci_2023_122332
crossref_primary_10_1016_j_memsci_2025_124227
crossref_primary_10_3390_membranes13060549
crossref_primary_10_3390_membranes12100967
crossref_primary_10_1016_j_jece_2022_107860
crossref_primary_10_1016_j_desal_2024_117845
crossref_primary_10_1016_j_desal_2023_116876
crossref_primary_10_1016_j_desal_2024_118136
crossref_primary_10_1016_j_watres_2023_120255
crossref_primary_10_1016_j_desal_2024_118277
crossref_primary_10_1016_j_memsci_2023_121407
crossref_primary_10_1007_s11696_025_03948_2
crossref_primary_10_1016_j_desal_2021_115261
crossref_primary_10_1016_j_memsci_2024_123369
crossref_primary_10_1016_j_memlet_2022_100036
crossref_primary_10_1016_j_memlet_2023_100063
crossref_primary_10_1016_j_memsci_2022_121076
crossref_primary_10_1016_j_memsci_2021_119173
crossref_primary_10_1016_j_memsci_2022_121070
crossref_primary_10_1016_j_watres_2025_124056
crossref_primary_10_1016_j_desal_2024_117616
crossref_primary_10_1016_j_desal_2023_116509
crossref_primary_10_1016_j_memsci_2021_119450
crossref_primary_10_3390_membranes14090190
crossref_primary_10_1038_s41467_024_53042_6
crossref_primary_10_1016_j_seppur_2023_125401
crossref_primary_10_1016_j_seppur_2022_121547
crossref_primary_10_1016_j_watres_2024_123063
crossref_primary_10_1016_j_memsci_2021_119699
crossref_primary_10_1021_acs_est_5c06050
crossref_primary_10_1016_j_watres_2022_118264
crossref_primary_10_1016_j_desal_2025_119297
crossref_primary_10_1038_s41467_024_55595_y
crossref_primary_10_1016_j_memsci_2023_121854
crossref_primary_10_1016_j_memsci_2024_122869
crossref_primary_10_1016_j_memsci_2024_122865
crossref_primary_10_1007_s11783_022_1550_7
crossref_primary_10_1007_s10965_022_03126_y
crossref_primary_10_1016_j_seppur_2021_118406
crossref_primary_10_1016_j_jece_2021_106958
crossref_primary_10_1016_j_memsci_2021_119586
crossref_primary_10_3390_membranes15040118
crossref_primary_10_1016_j_seppur_2022_120648
crossref_primary_10_1016_j_seppur_2022_120886
crossref_primary_10_1016_j_jece_2024_115136
crossref_primary_10_1016_j_memsci_2020_118775
crossref_primary_10_1016_j_memsci_2023_122165
crossref_primary_10_1016_j_memsci_2024_123278
crossref_primary_10_1016_j_cej_2024_149492
crossref_primary_10_1016_j_desal_2023_116801
crossref_primary_10_1021_acs_jpcc_4c04669
crossref_primary_10_1016_j_memsci_2024_123393
crossref_primary_10_1016_j_desal_2023_116521
crossref_primary_10_1016_j_desal_2024_117514
crossref_primary_10_1016_j_memsci_2021_119871
crossref_primary_10_1016_j_desal_2025_118989
crossref_primary_10_1016_j_chemosphere_2023_139556
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.est.0c01427
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
ExternalDocumentID 32396337
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
NPM
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
XZL
YZZ
ZCA
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-c424t-8a8c9c97a2be97e157f27a506420aaf2f7f0951b3e5cd289841923fdce92395d2
IEDL.DBID 7X8
ISICitedReferencesCount 184
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538420500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5851
IngestDate Fri Jul 11 08:42:26 EDT 2025
Thu Apr 03 06:58:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-8a8c9c97a2be97e157f27a506420aaf2f7f0951b3e5cd289841923fdce92395d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0688-5431
0000-0002-7932-6462
0000-0003-0753-3902
PMID 32396337
PQID 2402441982
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2402441982
pubmed_primary_32396337
PublicationCentury 2000
PublicationDate 2020-06-02
PublicationDateYYYYMMDD 2020-06-02
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2020
SSID ssj0002308
Score 2.6582103
Snippet Recent studies show that the surface morphology of a thin film composite (TFC) polyamide membrane depends strongly on its porous substrate. Nevertheless, the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6978
Title Dissecting the Role of Substrate on the Morphology and Separation Properties of Thin Film Composite Polyamide Membranes: Seeing Is Believing
URI https://www.ncbi.nlm.nih.gov/pubmed/32396337
https://www.proquest.com/docview/2402441982
Volume 54
WOSCitedRecordID wos000538420500055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qfNAHL9PpvBHB17o2aZfWF_GyoeBG8QJ7K2mawGBr5zoF_4M_2nPazvkiCL600DQXyMnJd85JvkPImS0D3-FtYyXCcS2XS88CUB9bIvBUorX23PKi8IPo9_3BIAgrh1teHauc68RCUSeZQh95C6MAsHUHPrucvFqYNQqjq1UKjWVS4wBlUKrFYMEWDvC6uArngYmE4a9vah-nJVV-jl3YCmwEJn7Hl8U-09387wi3yEaFMOlVKRLbZEmndbL-g3ewThqdxfU2-LVa3_kO-bzF8LzCo9AUkCF9zEaaZoaieilobGmWFgW9DOan8MhTmSb0SZcU4lAaond_ijStWBHTgtLucDSmqHjwgJimYTb6kONhAq3oMRjroGwvoAWNnd7n9FoDLEY3xy556Xaeb-6sKl-DpVzmzixf-ipQgZAs1oHQjicMExIZ8ZgtpWFGGAR0MdcgB2Do-RiB5iZRGl6Bl7AGWUmzVO8TKqRo2xK-Ki4B0IEIOaAJFWgb5sUAmprkdD4HEawHDHLAaLO3PFrMQpPslRMZTUrijohDg23OxcEfah-SNYamNTpc2BGpGdAG-pisqvfZMJ-eFIIGz37Y-wJs0N8d
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+the+Role+of+Substrate+on+the+Morphology+and+Separation+Properties+of+Thin+Film+Composite+Polyamide+Membranes%3A+Seeing+Is+Believing&rft.jtitle=Environmental+science+%26+technology&rft.au=Peng%2C+Lu+Elfa&rft.au=Yao%2C+Zhikan&rft.au=Yang%2C+Zhe&rft.au=Guo%2C+Hao&rft.date=2020-06-02&rft.eissn=1520-5851&rft_id=info:doi/10.1021%2Facs.est.0c01427&rft_id=info%3Apmid%2F32396337&rft_id=info%3Apmid%2F32396337&rft.externalDocID=32396337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5851&client=summon