A review of vegetation phenological metrics extraction using time-series, multispectral satellite data
Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been...
Gespeichert in:
| Veröffentlicht in: | Remote sensing of environment Jg. 237; S. 111511 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Elsevier Inc
01.02.2020
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0034-4257, 1879-0704 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization.
•Review of satellite remote sensing-based land surface phenology detection methods.•Discussion of advantages and drawbacks of phenological metrics extraction methods.•Review of error sources and methods to reduce their effects on phenology detection.•Opportunities and challenges related to improve phonological metrics extraction. |
|---|---|
| AbstractList | Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization. Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization. •Review of satellite remote sensing-based land surface phenology detection methods.•Discussion of advantages and drawbacks of phenological metrics extraction methods.•Review of error sources and methods to reduce their effects on phenology detection.•Opportunities and challenges related to improve phonological metrics extraction. |
| ArticleNumber | 111511 |
| Author | Xiang, Daxiang Hu, Shun Wardlow, Brian D. Zeng, Linglin Li, Deren |
| Author_xml | – sequence: 1 givenname: Linglin surname: Zeng fullname: Zeng, Linglin organization: College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China – sequence: 2 givenname: Brian D. surname: Wardlow fullname: Wardlow, Brian D. email: bwardlow2@unl.edu organization: Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln, 3310 Holdrege St, Lincoln, 68583, USA – sequence: 3 givenname: Daxiang surname: Xiang fullname: Xiang, Daxiang organization: Changjiang River Scientifc Research Institute, Changjiang River Water Resources Commission, Wuhan, China – sequence: 4 givenname: Shun surname: Hu fullname: Hu, Shun organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China – sequence: 5 givenname: Deren surname: Li fullname: Li, Deren organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China |
| BookMark | eNp9kT1PwzAQhi0EEqXwA9gssTCQ4kucOBETQnxJSCwwW65zLq6SuNgOH_8et2FiYLJ0ft7T3XNHZH9wAxJyCmwBDKrL9cIHXOQMmgUAlAB7ZAa1aDImGN8nM8YKnvG8FIfkKIQ1Y1DWAmbEXFOPHxY_qTP0A1cYVbRuoJs3HFznVlarjvYYvdWB4lf0Su_-x2CHFY22xyygtxguaD920YYN6gR1NKiIXWcj0lZFdUwOjOoCnvy-c_J6d_ty85A9Pd8_3lw_ZZrnPGY116w0vBS80KJqWqErI5ZQtUslTJs3HFmRFtFlA6YuGDO5UGWtU72pTcOhmJPzqe_Gu_cRQ5S9DToNogZ0Y5B5UeacA9-hZ3_QtRv9kKbbUUVVQcMTJSZKexeCRyO1nRSlLW0ngcmtf7mWyb_c-peT_5SEP8mNt73y3_9mrqYMJkfpKl4GbXHQ2FqfvMrW2X_SP0Ran_E |
| CitedBy_id | crossref_primary_10_3390_su17072970 crossref_primary_10_1007_s10668_025_06276_3 crossref_primary_10_1016_j_jag_2021_102435 crossref_primary_10_1016_j_jag_2021_102556 crossref_primary_10_1016_j_scitotenv_2022_155077 crossref_primary_10_3390_rs17172927 crossref_primary_10_1029_2023JG007951 crossref_primary_10_1016_j_ecoinf_2025_103109 crossref_primary_10_1016_j_jag_2024_104333 crossref_primary_10_1109_JSTARS_2024_3517415 crossref_primary_10_3390_rs14061347 crossref_primary_10_1016_j_jag_2022_102708 crossref_primary_10_3390_rs16071222 crossref_primary_10_1016_j_foreco_2024_121878 crossref_primary_10_1016_j_ecolind_2020_107055 crossref_primary_10_1111_gcb_70116 crossref_primary_10_3390_rs15225366 crossref_primary_10_1016_j_rse_2023_113860 crossref_primary_10_1016_j_jhydrol_2024_130977 crossref_primary_10_1029_2023EF003788 crossref_primary_10_3390_rs17030451 crossref_primary_10_3390_rs15194783 crossref_primary_10_1002_gdj3_173 crossref_primary_10_3390_rs15215203 crossref_primary_10_1016_j_ecoinf_2025_103216 crossref_primary_10_1016_j_ecolind_2023_111392 crossref_primary_10_3390_s20195551 crossref_primary_10_1007_s10333_023_00934_w crossref_primary_10_1007_s10333_024_01009_0 crossref_primary_10_3390_f13121973 crossref_primary_10_3390_rs14040997 crossref_primary_10_3390_rs14030721 crossref_primary_10_1016_j_foreco_2024_121742 crossref_primary_10_1109_TGRS_2022_3170338 crossref_primary_10_3390_rs14225725 crossref_primary_10_1016_j_jenvman_2025_126680 crossref_primary_10_1016_j_eswa_2021_115929 crossref_primary_10_1016_j_scitotenv_2024_173049 crossref_primary_10_1016_j_scitotenv_2023_168778 crossref_primary_10_3390_rs14061331 crossref_primary_10_1007_s00500_025_10496_0 crossref_primary_10_1016_j_ecoinf_2022_101898 crossref_primary_10_1080_10095020_2025_2541071 crossref_primary_10_3390_rs16142520 crossref_primary_10_3390_rs14225730 crossref_primary_10_1016_j_agrformet_2025_110661 crossref_primary_10_1016_j_compag_2024_109274 crossref_primary_10_1016_j_agrformet_2024_110141 crossref_primary_10_1029_2021MS002730 crossref_primary_10_1038_s41586_025_09410_3 crossref_primary_10_1016_j_rse_2023_113521 crossref_primary_10_2989_10220119_2024_2360991 crossref_primary_10_1016_j_agrformet_2024_110147 crossref_primary_10_3390_rs13112128 crossref_primary_10_3390_rs13020286 crossref_primary_10_1016_j_envres_2023_115634 crossref_primary_10_1016_j_jhydrol_2023_129420 crossref_primary_10_1016_j_scitotenv_2024_174262 crossref_primary_10_1007_s11119_023_10064_2 crossref_primary_10_3390_rs13204032 crossref_primary_10_1007_s11119_024_10149_6 crossref_primary_10_1007_s12518_021_00368_1 crossref_primary_10_3389_ffgc_2021_687988 crossref_primary_10_1016_j_agrformet_2024_110253 crossref_primary_10_1080_07900627_2023_2293862 crossref_primary_10_1111_sjtg_12476 crossref_primary_10_1016_j_compag_2024_109260 crossref_primary_10_1080_01431161_2023_2189033 crossref_primary_10_1016_j_foreco_2023_121349 crossref_primary_10_1016_j_eja_2025_127542 crossref_primary_10_1016_j_scitotenv_2021_152309 crossref_primary_10_3390_rs14225749 crossref_primary_10_1016_j_agrformet_2024_110019 crossref_primary_10_1111_1365_2664_14830 crossref_primary_10_3390_rs14092055 crossref_primary_10_1111_nph_19684 crossref_primary_10_3390_agriculture14112052 crossref_primary_10_3390_rs17061025 crossref_primary_10_1080_15481603_2024_2426598 crossref_primary_10_1109_JSTARS_2024_3357216 crossref_primary_10_3390_f14061080 crossref_primary_10_1016_j_isprsjprs_2023_10_015 crossref_primary_10_1016_j_agrformet_2021_108489 crossref_primary_10_1016_j_jenvman_2023_119131 crossref_primary_10_3390_rs17111853 crossref_primary_10_3390_rs14246331 crossref_primary_10_1016_j_compag_2024_109212 crossref_primary_10_1007_s10661_021_09356_9 crossref_primary_10_3390_rs12152384 crossref_primary_10_1016_j_rse_2023_113785 crossref_primary_10_3390_rs13081597 crossref_primary_10_1177_03091333221114737 crossref_primary_10_1016_j_jag_2025_104769 crossref_primary_10_1109_TGRS_2023_3343071 crossref_primary_10_1109_JSTARS_2024_3492177 crossref_primary_10_1016_j_agsy_2025_104338 crossref_primary_10_1016_j_scs_2025_106680 crossref_primary_10_1080_10095020_2025_2547956 crossref_primary_10_1007_s12524_025_02129_8 crossref_primary_10_1016_j_jenvman_2022_115612 crossref_primary_10_3390_rs13112060 crossref_primary_10_3390_rs13112181 crossref_primary_10_5194_bg_20_4259_2023 crossref_primary_10_3390_automation4010007 crossref_primary_10_1016_j_agrformet_2024_110310 crossref_primary_10_1029_2022JG007183 crossref_primary_10_1371_journal_pone_0250825 crossref_primary_10_3390_rs14071573 crossref_primary_10_1016_j_ecolind_2021_107682 crossref_primary_10_1109_TGRS_2023_3307123 crossref_primary_10_3390_rs13152932 crossref_primary_10_1080_10106049_2024_2371923 crossref_primary_10_1080_01431161_2021_1899331 crossref_primary_10_1002_ppj2_20031 crossref_primary_10_1016_j_rse_2022_113002 crossref_primary_10_1038_s41598_025_14714_5 crossref_primary_10_1371_journal_pone_0300486 crossref_primary_10_1109_JSTARS_2022_3142395 crossref_primary_10_1002_gdj3_268 crossref_primary_10_1016_j_eja_2025_127581 crossref_primary_10_1016_j_rse_2023_113790 crossref_primary_10_1016_j_rse_2022_113370 crossref_primary_10_1016_j_indic_2025_100631 crossref_primary_10_1109_JSTARS_2024_3516212 crossref_primary_10_3390_rs14092136 crossref_primary_10_3390_rs15225413 crossref_primary_10_1016_j_rse_2021_112810 crossref_primary_10_1016_j_ecolind_2025_113627 crossref_primary_10_3390_atmos13111854 crossref_primary_10_1016_j_accre_2024_04_005 crossref_primary_10_1016_j_ecolind_2022_108673 crossref_primary_10_1016_j_scitotenv_2024_172014 crossref_primary_10_1109_TGRS_2025_3567469 crossref_primary_10_3390_ijerph20042844 crossref_primary_10_1002_esp_5835 crossref_primary_10_1029_2024JG008266 crossref_primary_10_3390_rs16142583 crossref_primary_10_1016_j_srs_2025_100227 crossref_primary_10_3390_rs14091957 crossref_primary_10_3390_s25072106 crossref_primary_10_3390_rs15051245 crossref_primary_10_1016_j_rse_2022_113060 crossref_primary_10_3389_fmars_2022_977050 crossref_primary_10_1016_j_ecolind_2025_113741 crossref_primary_10_1016_j_rsase_2020_100460 crossref_primary_10_1080_01431161_2025_2487228 crossref_primary_10_1016_j_cj_2025_03_012 crossref_primary_10_1016_j_cj_2025_03_013 crossref_primary_10_1016_j_isprsjprs_2024_07_031 crossref_primary_10_3390_ani14101468 crossref_primary_10_1016_j_jag_2021_102385 crossref_primary_10_1080_01431161_2021_1978584 crossref_primary_10_3390_rs15143599 crossref_primary_10_1016_j_compag_2025_110136 crossref_primary_10_3390_s25072214 crossref_primary_10_1007_s10668_023_04347_x crossref_primary_10_3390_rs13245173 crossref_primary_10_3390_rs16132414 crossref_primary_10_1016_j_rse_2025_114787 crossref_primary_10_1080_17538947_2023_2300311 crossref_primary_10_3390_rs15133439 crossref_primary_10_1016_j_laa_2024_06_002 crossref_primary_10_1016_j_agrformet_2023_109357 crossref_primary_10_3390_rs15215257 crossref_primary_10_3390_rs12172726 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1080_01431161_2025_2511207 crossref_primary_10_1007_s11430_023_1363_3 crossref_primary_10_3390_s24030834 crossref_primary_10_3390_rs14194859 crossref_primary_10_1111_nph_19229 crossref_primary_10_3390_rs13214347 crossref_primary_10_1016_j_rse_2025_114656 crossref_primary_10_1016_j_rse_2022_113046 crossref_primary_10_3390_rs15133404 crossref_primary_10_3390_land14091745 crossref_primary_10_1016_j_scitotenv_2024_175753 crossref_primary_10_1111_gcb_16436 crossref_primary_10_3390_rs15082090 crossref_primary_10_3390_rs15143456 crossref_primary_10_3390_rs16132309 crossref_primary_10_3390_rs13132477 crossref_primary_10_3390_rs17173051 crossref_primary_10_1002_ecs2_4681 crossref_primary_10_1109_JSTARS_2024_3411304 crossref_primary_10_1016_j_fcr_2023_108847 crossref_primary_10_3390_rs16173183 crossref_primary_10_1016_j_catena_2025_108770 crossref_primary_10_1016_j_ecolind_2025_113996 crossref_primary_10_1016_j_ecolind_2021_108290 crossref_primary_10_3390_rs14143462 crossref_primary_10_1016_j_atech_2025_100816 crossref_primary_10_1088_1748_9326_adf23e crossref_primary_10_1016_j_scitotenv_2024_171088 crossref_primary_10_1016_j_jenvman_2025_124326 crossref_primary_10_1016_j_scitotenv_2022_155154 crossref_primary_10_3390_rs14246290 crossref_primary_10_1186_s42408_023_00218_y crossref_primary_10_1002_csr_70164 crossref_primary_10_1016_j_jhydrol_2024_131218 crossref_primary_10_3389_fpls_2023_1130659 crossref_primary_10_1007_s11760_023_02872_w crossref_primary_10_2166_wh_2024_102 crossref_primary_10_1016_j_rse_2025_114997 crossref_primary_10_3390_agronomy10050618 crossref_primary_10_1007_s11769_021_1226_4 crossref_primary_10_3390_rs13214251 crossref_primary_10_3390_rs16101786 crossref_primary_10_3390_rs14030517 crossref_primary_10_1016_j_atech_2025_100809 crossref_primary_10_1109_JSTARS_2024_3495048 crossref_primary_10_1080_22797254_2024_2422315 crossref_primary_10_3389_fpls_2022_805738 crossref_primary_10_3390_rs12203383 crossref_primary_10_1007_s10708_025_11430_5 crossref_primary_10_1109_JSTARS_2020_3039554 crossref_primary_10_1080_17538947_2025_2498601 crossref_primary_10_1007_s00484_024_02815_1 crossref_primary_10_1016_j_compag_2023_107721 crossref_primary_10_1007_s11119_023_10079_9 crossref_primary_10_1016_j_rse_2025_114740 crossref_primary_10_1038_s41597_024_03364_3 crossref_primary_10_1109_JSTARS_2025_3595541 crossref_primary_10_1016_j_rsase_2022_100712 crossref_primary_10_3390_rs15225382 crossref_primary_10_1080_01431161_2021_1939908 crossref_primary_10_1109_JSTARS_2023_3269908 crossref_primary_10_1016_j_agrformet_2022_109157 crossref_primary_10_3390_rs12071199 crossref_primary_10_1016_j_rse_2021_112716 crossref_primary_10_3390_rs13193953 crossref_primary_10_1016_j_eja_2024_127327 crossref_primary_10_1088_1748_9326_ade9e2 crossref_primary_10_1016_j_psep_2025_107058 crossref_primary_10_1016_j_agwat_2022_107576 crossref_primary_10_1002_ldr_3751 crossref_primary_10_1016_j_ecolind_2023_110815 crossref_primary_10_1080_10095020_2024_2328100 crossref_primary_10_1109_TGRS_2024_3430528 crossref_primary_10_1016_j_ecoinf_2023_102140 crossref_primary_10_1016_j_rse_2024_114530 crossref_primary_10_3390_rs14030674 crossref_primary_10_1016_j_csag_2024_100008 crossref_primary_10_1016_j_atech_2022_100046 crossref_primary_10_1016_j_rse_2024_114309 crossref_primary_10_3390_rs15215225 crossref_primary_10_3390_cli9030047 crossref_primary_10_3390_agronomy12081773 crossref_primary_10_3390_geomatics3010012 crossref_primary_10_1016_j_jag_2021_102323 crossref_primary_10_3390_rs13112202 crossref_primary_10_1016_j_agrformet_2023_109573 crossref_primary_10_3390_w14152324 crossref_primary_10_1007_s11676_025_01843_w crossref_primary_10_1007_s10342_023_01642_0 crossref_primary_10_1007_s41651_025_00220_9 crossref_primary_10_1016_j_rse_2024_114301 crossref_primary_10_3390_rs16224270 crossref_primary_10_1016_j_ecolind_2025_113557 crossref_primary_10_1080_01431161_2023_2264496 crossref_primary_10_3390_rs14020244 crossref_primary_10_1080_10106049_2025_2452252 crossref_primary_10_1016_j_rse_2021_112419 crossref_primary_10_1016_j_jenvman_2022_115134 crossref_primary_10_5194_bg_21_473_2024 crossref_primary_10_1016_j_ecoinf_2024_102659 crossref_primary_10_3390_rs15143615 crossref_primary_10_3390_f15030474 crossref_primary_10_3390_rs14133160 crossref_primary_10_1016_j_isprsjprs_2024_08_009 crossref_primary_10_3389_fenvs_2023_1275844 crossref_primary_10_3390_rs13163298 crossref_primary_10_3390_rs15040979 crossref_primary_10_1111_gcb_17231 crossref_primary_10_3390_rs14215337 crossref_primary_10_1016_j_ecolind_2022_109492 crossref_primary_10_1088_1748_9326_ac8499 crossref_primary_10_3390_rs14163946 crossref_primary_10_1016_j_ecolind_2022_109375 crossref_primary_10_1016_j_scijus_2024_09_006 crossref_primary_10_3390_agriculture14030345 crossref_primary_10_3390_rs13153015 crossref_primary_10_3390_rs14010209 crossref_primary_10_3389_fclim_2021_715837 crossref_primary_10_1016_j_agrformet_2023_109549 crossref_primary_10_1016_j_isprsjprs_2024_08_011 crossref_primary_10_3390_f15030487 crossref_primary_10_1007_s11356_022_24288_8 crossref_primary_10_1016_j_ecoinf_2023_102378 crossref_primary_10_1016_j_isprsjprs_2025_03_024 crossref_primary_10_3390_ijgi11080423 crossref_primary_10_59717_j_xinn_geo_2024_100070 crossref_primary_10_3390_rs14236050 crossref_primary_10_1016_j_jag_2023_103422 crossref_primary_10_1016_j_isprsjprs_2024_09_023 crossref_primary_10_1007_s11053_024_10434_1 crossref_primary_10_3390_su15076012 crossref_primary_10_1016_j_foreco_2024_122279 crossref_primary_10_5194_acp_25_7863_2025 crossref_primary_10_1016_j_envsoft_2020_104666 crossref_primary_10_3390_rs13132528 crossref_primary_10_1038_s41598_023_41048_x crossref_primary_10_1007_s11629_023_8346_5 crossref_primary_10_3390_agriculture14091608 crossref_primary_10_1029_2022JG007315 crossref_primary_10_1590_0001_3765202120200712 crossref_primary_10_3390_rs13163073 crossref_primary_10_3390_rs14010101 crossref_primary_10_3390_rs15215097 crossref_primary_10_1016_j_scitotenv_2022_156990 crossref_primary_10_7780_kjrs_2024_40_5_2_8 crossref_primary_10_1016_j_agwat_2021_106884 crossref_primary_10_1016_j_rse_2021_112751 crossref_primary_10_3390_rs13071397 crossref_primary_10_1016_j_isprsjprs_2025_04_039 crossref_primary_10_1016_j_rse_2021_112743 crossref_primary_10_1080_15481603_2025_2510869 crossref_primary_10_1002_eap_2526 crossref_primary_10_3390_land14020244 crossref_primary_10_1016_j_ecss_2025_109264 crossref_primary_10_1016_j_ecoinf_2024_102767 crossref_primary_10_3390_rs13040668 crossref_primary_10_1016_j_agrformet_2023_109646 crossref_primary_10_1016_j_cj_2022_03_001 crossref_primary_10_3390_rs17050933 crossref_primary_10_3389_ffgc_2022_1032066 crossref_primary_10_1016_j_agee_2023_108603 crossref_primary_10_1016_j_ecolind_2025_114203 crossref_primary_10_3390_rs15245689 crossref_primary_10_3390_rs15205032 crossref_primary_10_1007_s10661_025_14140_0 crossref_primary_10_3390_f16091472 crossref_primary_10_1016_j_jag_2024_104097 crossref_primary_10_3390_rs17091599 crossref_primary_10_5194_bg_18_4117_2021 crossref_primary_10_3390_rs16122133 crossref_primary_10_3390_f16040608 crossref_primary_10_3390_rs16224209 crossref_primary_10_1016_j_rsase_2024_101230 crossref_primary_10_3390_rs13142670 crossref_primary_10_1093_gigascience_giac052 crossref_primary_10_1016_j_jenvman_2020_111402 crossref_primary_10_1080_15481603_2024_2309843 crossref_primary_10_1016_j_jhydrol_2022_128605 crossref_primary_10_3390_rs13142678 crossref_primary_10_1016_j_agwat_2024_108962 crossref_primary_10_3390_rs16193687 crossref_primary_10_3390_rs17142503 crossref_primary_10_3390_agriculture12070945 crossref_primary_10_1016_j_agrformet_2023_109869 crossref_primary_10_1016_j_pbi_2020_04_011 crossref_primary_10_1007_s40003_023_00685_4 crossref_primary_10_1016_j_agrformet_2023_109862 crossref_primary_10_1080_01431161_2022_2135415 crossref_primary_10_3390_rs14163909 crossref_primary_10_3390_rs16234370 crossref_primary_10_1016_j_compag_2025_110297 crossref_primary_10_1016_j_cosust_2020_09_006 crossref_primary_10_3390_f16050771 crossref_primary_10_3390_rs13091836 crossref_primary_10_1080_15481603_2024_2421574 crossref_primary_10_1080_2150704X_2022_2106455 crossref_primary_10_1016_j_isprsjprs_2025_02_026 crossref_primary_10_1016_j_rse_2020_112113 crossref_primary_10_1080_01431161_2022_2079018 crossref_primary_10_1016_j_rse_2021_112799 crossref_primary_10_1016_j_rsase_2025_101605 crossref_primary_10_1080_01431161_2020_1851802 crossref_primary_10_3390_rs14081812 crossref_primary_10_3390_rs12223729 crossref_primary_10_1038_s41598_024_66338_w crossref_primary_10_3390_rs16162921 crossref_primary_10_1080_15481603_2024_2333587 crossref_primary_10_1016_j_ecolind_2025_114131 crossref_primary_10_1080_01431161_2025_2549532 crossref_primary_10_3390_rs13214426 crossref_primary_10_1016_j_ecolind_2025_113166 crossref_primary_10_1109_TGRS_2023_3284992 crossref_primary_10_1016_j_rsase_2024_101210 crossref_primary_10_1016_j_rse_2020_112232 crossref_primary_10_1002_jsfa_11588 crossref_primary_10_1016_j_rse_2020_112004 crossref_primary_10_3390_d15101064 crossref_primary_10_1016_j_jhydrol_2022_128755 crossref_primary_10_3390_rs13071355 crossref_primary_10_3390_fire8080320 crossref_primary_10_3390_f12050574 crossref_primary_10_3390_rs13132435 crossref_primary_10_3390_rs13245036 crossref_primary_10_3390_rs15143537 crossref_primary_10_3390_s25072239 crossref_primary_10_3390_rs13101958 crossref_primary_10_1016_j_ecolind_2025_114122 crossref_primary_10_3390_rs15082205 crossref_primary_10_3390_rs15040964 crossref_primary_10_1016_j_rsase_2024_101325 crossref_primary_10_3390_land14010132 crossref_primary_10_1016_j_isprsjprs_2021_09_011 crossref_primary_10_1111_gcb_16592 crossref_primary_10_3390_rs14215621 crossref_primary_10_1016_j_isprsjprs_2020_11_019 crossref_primary_10_3390_su16219389 crossref_primary_10_3390_rs16050914 crossref_primary_10_3390_agronomy15061329 crossref_primary_10_3390_rs16122173 crossref_primary_10_1007_s00484_023_02502_7 crossref_primary_10_1002_widm_1522 crossref_primary_10_3390_agronomy13122861 crossref_primary_10_1016_j_isprsjprs_2024_03_018 crossref_primary_10_3390_rs12091413 crossref_primary_10_3390_rs15235565 crossref_primary_10_3390_rs13234736 crossref_primary_10_1016_j_apenergy_2024_123994 crossref_primary_10_3390_rs17091560 crossref_primary_10_3390_s20020435 crossref_primary_10_1016_j_isprsjprs_2021_08_003 crossref_primary_10_1016_j_ecolind_2025_114038 crossref_primary_10_1111_2041_210X_14365 crossref_primary_10_1016_j_gecco_2025_e03824 crossref_primary_10_1016_j_rse_2021_112368 crossref_primary_10_1371_journal_pone_0302882 crossref_primary_10_3390_rs14102499 crossref_primary_10_3390_su15021373 crossref_primary_10_3390_rs16203810 crossref_primary_10_3390_rs12223738 crossref_primary_10_1016_j_agrformet_2020_108316 crossref_primary_10_1016_j_rse_2024_114043 crossref_primary_10_1016_j_jhydrol_2025_133663 crossref_primary_10_1029_2022EF002888 crossref_primary_10_1016_j_jag_2022_103092 crossref_primary_10_1111_2041_210X_70067 crossref_primary_10_34133_plantphenomics_0043 crossref_primary_10_1029_2023EF004127 crossref_primary_10_1080_10106049_2025_2547928 crossref_primary_10_3390_f15122150 crossref_primary_10_1016_j_rse_2023_113800 crossref_primary_10_3390_rs12183062 crossref_primary_10_3390_rs16183429 crossref_primary_10_1016_j_scitotenv_2022_159064 crossref_primary_10_1016_j_scitotenv_2024_175181 crossref_primary_10_1016_j_ecoinf_2024_102917 crossref_primary_10_1016_j_ecolind_2024_112919 crossref_primary_10_1109_TGRS_2024_3404638 crossref_primary_10_1016_j_compag_2024_109313 crossref_primary_10_1016_j_rse_2021_112471 crossref_primary_10_3390_rs17122059 crossref_primary_10_3390_rs16020374 crossref_primary_10_1016_j_compag_2023_108029 crossref_primary_10_1016_j_jenvman_2025_126293 crossref_primary_10_3390_rs13234870 crossref_primary_10_3390_rs17162858 crossref_primary_10_1016_j_agrformet_2021_108516 crossref_primary_10_3390_rs15235537 crossref_primary_10_1016_j_scitotenv_2023_168488 crossref_primary_10_1109_TGRS_2021_3124798 crossref_primary_10_3390_rs16050826 crossref_primary_10_1016_j_compag_2025_110953 crossref_primary_10_3390_rs16203833 crossref_primary_10_1029_2025EF006117 crossref_primary_10_1093_forestry_cpad039 crossref_primary_10_3390_agronomy11122439 crossref_primary_10_1016_j_indcrop_2025_120753 crossref_primary_10_1016_j_isprsjprs_2020_10_005 crossref_primary_10_3390_agriengineering6040217 crossref_primary_10_3390_f14122310 crossref_primary_10_1016_j_biosystemseng_2023_06_002 crossref_primary_10_3390_rs13010086 crossref_primary_10_1016_j_ecolind_2023_110448 crossref_primary_10_3389_fevo_2023_1093454 crossref_primary_10_1093_insilicoplants_diab017 crossref_primary_10_1002_rse2_222 crossref_primary_10_1002_rse2_223 crossref_primary_10_1016_j_rse_2023_113827 crossref_primary_10_3390_s25113570 crossref_primary_10_1016_j_isprsjprs_2025_06_033 crossref_primary_10_1016_j_isprsjprs_2025_04_022 crossref_primary_10_3390_rs16234521 crossref_primary_10_3390_rs14122909 crossref_primary_10_1038_s43017_022_00317_5 crossref_primary_10_3390_rs15041074 crossref_primary_10_1080_20964471_2025_2540703 crossref_primary_10_1016_j_foreco_2020_118663 crossref_primary_10_1007_s10340_024_01771_4 crossref_primary_10_1016_j_isprsjprs_2022_09_007 crossref_primary_10_1016_j_compag_2020_105534 crossref_primary_10_3390_f12030305 crossref_primary_10_1109_JSTARS_2023_3297713 crossref_primary_10_1016_j_cj_2023_12_010 crossref_primary_10_1109_JSTARS_2023_3310617 crossref_primary_10_3390_rs15092413 crossref_primary_10_1016_j_scitotenv_2023_167092 crossref_primary_10_3390_rs14153645 crossref_primary_10_3390_rs13142716 crossref_primary_10_1016_j_jag_2025_104804 crossref_primary_10_1016_j_atmosres_2024_107405 crossref_primary_10_1038_s41597_023_02695_x crossref_primary_10_3390_rs13152889 crossref_primary_10_1111_1365_2745_13897 crossref_primary_10_1016_j_agrformet_2025_110573 crossref_primary_10_1515_geo_2022_0369 crossref_primary_10_1016_j_rse_2024_114083 crossref_primary_10_1007_s10661_024_13270_1 crossref_primary_10_1088_1748_9326_aca41e crossref_primary_10_3390_rs14153639 crossref_primary_10_3390_rs15092420 crossref_primary_10_1016_j_rse_2022_113310 crossref_primary_10_1016_j_ecolind_2024_111983 crossref_primary_10_1016_j_jag_2024_103984 crossref_primary_10_1016_j_scs_2023_104877 crossref_primary_10_1080_15481603_2025_2508574 crossref_primary_10_3390_agronomy11122465 crossref_primary_10_1080_15481603_2025_2531593 crossref_primary_10_1016_j_scitotenv_2021_152462 crossref_primary_10_1016_j_jag_2024_103867 crossref_primary_10_3390_rs13142727 crossref_primary_10_1016_j_rse_2023_113967 crossref_primary_10_1109_TGRS_2021_3101127 crossref_primary_10_1088_1748_9326_ada56e crossref_primary_10_3390_rs14174415 crossref_primary_10_1111_ecog_06768 crossref_primary_10_3390_rs14010146 crossref_primary_10_1016_j_atech_2025_101378 crossref_primary_10_1016_j_agrformet_2024_110182 crossref_primary_10_3390_rs16152730 crossref_primary_10_3390_rs14184585 crossref_primary_10_3390_land11040504 crossref_primary_10_3390_rs14153629 crossref_primary_10_3390_rs16244672 crossref_primary_10_1117_1_JRS_17_014517 crossref_primary_10_3390_rs13050933 crossref_primary_10_1007_s12145_024_01443_y crossref_primary_10_1109_JSTARS_2022_3196494 crossref_primary_10_1007_s11442_025_2357_9 crossref_primary_10_1016_j_agrformet_2020_108019 crossref_primary_10_1016_j_agrformet_2025_110596 crossref_primary_10_5194_essd_14_2851_2022 crossref_primary_10_1186_s13595_022_01130_2 crossref_primary_10_1371_journal_pone_0282364 crossref_primary_10_3390_agriculture15151578 crossref_primary_10_1016_j_ecolind_2022_109080 crossref_primary_10_1002_eco_70066 crossref_primary_10_1016_j_rse_2025_115016 crossref_primary_10_1016_j_scitotenv_2023_168161 crossref_primary_10_1139_cjz_2023_0113 |
| Cites_doi | 10.5194/bg-12-5995-2015 10.1080/01431161.2014.994719 10.1016/j.rse.2014.01.007 10.1016/j.rse.2016.02.020 10.1016/j.rse.2018.04.030 10.1016/j.rse.2014.03.017 10.1016/j.rse.2014.10.012 10.1029/2012JG002070 10.1016/j.agrformet.2017.02.026 10.1111/j.1365-2486.2010.02164.x 10.1080/01431160802549237 10.3390/rs9090902 10.1016/j.asr.2005.08.037 10.1016/j.rse.2005.10.021 10.1016/j.rse.2007.01.004 10.1016/j.rse.2004.03.014 10.1016/S1161-0301(02)00110-7 10.1016/j.agrformet.2011.07.008 10.1016/j.rse.2018.09.002 10.1109/TGRS.2016.2552462 10.1016/j.rse.2013.02.007 10.1016/j.agrformet.2017.10.015 10.1016/j.ejor.2003.08.037 10.1038/s41598-018-23804-6 10.1016/j.rse.2017.11.009 10.3390/rs9030254 10.1016/j.rse.2016.11.021 10.1109/JSTARS.2013.2294956 10.1080/01431161.2014.883090 10.1109/TGRS.2003.817274 10.1016/j.rse.2008.09.003 10.1016/0034-4257(79)90013-0 10.1080/10106049.2012.760004 10.1109/TGRS.2012.2223475 10.1016/j.rse.2018.08.022 10.1016/j.rse.2015.01.011 10.1111/j.1365-2486.2005.00949.x 10.1016/j.agrformet.2014.09.009 10.1080/01431161.2014.883105 10.1016/0034-4257(94)90143-0 10.1016/j.rse.2005.03.011 10.1080/01431169008955174 10.1016/j.rse.2016.09.014 10.1016/j.ecoinf.2016.05.004 10.1016/j.rse.2010.08.013 10.1016/j.rse.2017.03.009 10.1016/j.rse.2006.05.003 10.1016/S1161-0301(02)00107-7 10.1016/j.rse.2011.12.001 10.1038/nclimate2253 10.1109/TGRS.2011.2166965 10.1016/j.rse.2019.01.010 10.3390/s16122099 10.1111/geb.12044 10.1029/2005JD006511 10.2307/3235884 10.1016/0034-4257(88)90106-X 10.1007/s00484-018-1512-8 10.5194/bg-10-4055-2013 10.1016/j.isprsjprs.2018.02.011 10.1016/j.rse.2015.03.018 10.1016/j.rse.2016.03.039 10.1109/TGRS.2013.2247611 10.1016/j.rse.2007.05.017 10.1016/j.rse.2011.10.006 10.1080/01621459.1988.10478639 10.1080/01431168608948945 10.1029/97GB00330 10.1016/j.rse.2011.05.006 10.1080/01431160600639743 10.1016/j.rse.2014.07.010 10.1109/TGRS.2007.903044 10.1016/j.rse.2018.06.047 10.1016/j.rse.2015.01.012 10.1016/j.isprsjprs.2017.09.002 10.4287/jsprs.38.5_36 10.1109/36.981354 10.2747/1548-1603.45.1.16 10.1080/01431161.2010.542194 10.1038/386698a0 10.1080/01431169408954343 10.1016/j.ecoinf.2018.05.006 10.1016/S0168-1923(97)00027-0 10.1016/j.compag.2018.03.007 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2 10.1016/S0034-4257(03)00103-2 10.1016/j.rse.2005.10.002 10.1016/S0034-4257(00)00175-9 10.1080/01431168408948860 10.1016/j.agrformet.2018.03.003 10.1016/j.asr.2007.05.066 10.1016/j.rse.2006.04.014 10.1109/JSTARS.2010.2075916 10.1016/j.agrformet.2017.10.008 10.3390/rs61111518 10.1109/36.655330 10.3390/rs9121271 10.3390/rs10050791 10.3390/rs5020982 10.1016/j.rse.2016.11.004 10.1016/j.rse.2015.03.031 10.1016/j.rse.2009.04.016 10.1016/S0034-4257(03)00144-5 10.1111/gcb.13562 10.5194/bg-11-4305-2014 10.1109/TGRS.2006.872089 10.1080/01431160116874 10.1016/j.rse.2008.06.017 10.1016/j.rse.2010.04.019 10.1002/ecs2.1627 10.1016/j.rse.2007.07.019 10.13031/2013.36451 10.1098/rspa.1998.0193 10.1007/s11284-014-1239-x 10.1080/01431160600967128 10.5194/bg-13-5085-2016 10.1016/j.rse.2017.01.001 10.1021/ac034173t 10.1016/j.rse.2010.04.005 10.1016/j.rse.2008.06.006 10.1080/01431161.2014.903437 10.1109/LGRS.2013.2253760 10.1080/01431160310001618455 10.1016/j.rse.2010.05.032 10.1016/j.foreco.2018.05.062 10.1016/j.rse.2018.10.012 10.1080/15481603.2018.1423725 10.1109/MGRS.2015.2434351 10.1016/j.rse.2005.10.022 10.3390/rs10071069 10.1016/j.rse.2017.04.016 10.1016/j.agrformet.2011.09.009 10.1016/j.rse.2012.04.001 10.1016/j.rse.2008.08.015 10.1080/01431169208904212 10.1016/j.rse.2013.01.011 10.1016/j.rse.2010.12.015 10.1016/j.rse.2016.01.021 10.1016/j.agrformet.2011.05.012 10.1016/j.rse.2006.11.025 10.1016/j.rse.2009.11.001 10.1016/j.agrformet.2014.08.007 10.1007/s00704-010-0374-8 10.1016/j.rse.2019.02.015 10.1080/01431160701241936 10.1016/j.rse.2012.08.009 10.1175/JCLI4226 10.1080/01431160802632249 10.1016/j.rse.2019.05.003 10.1109/JSTARS.2010.2051942 10.1016/j.rse.2003.11.006 10.14358/PERS.72.11.1225 10.1016/S0034-4257(02)00135-9 10.1016/j.agrformet.2015.07.005 10.1007/s00442-006-0657-z 10.1016/j.cageo.2004.05.006 10.1016/S0034-4257(98)00067-4 10.1109/TGRS.2002.802519 10.1111/j.1365-2486.2004.00890.x 10.1016/j.rse.2016.12.018 10.1016/j.rse.2012.12.017 10.1111/j.1365-2486.2009.01910.x 10.1016/j.agrformet.2012.01.013 10.1016/j.rse.2010.10.006 10.3390/rs3020203 10.1078/0176-1617-01176 10.1016/j.rse.2017.06.015 10.1016/j.rse.2013.07.025 10.1016/j.rse.2010.01.021 10.3390/rs2102369 10.1093/oxfordjournals.aob.a083148 10.3390/rs9040317 10.1016/j.rse.2019.111307 10.1016/j.agrformet.2016.11.011 10.3390/s17091982 10.1016/j.rse.2018.03.014 10.1016/j.agrformet.2016.11.193 10.1016/j.rse.2010.09.009 10.1016/j.agrformet.2018.03.010 10.1016/0034-4257(91)90016-Y 10.1016/j.rse.2016.04.022 10.1016/j.agrformet.2015.10.015 10.1111/j.1365-2486.2011.02521.x 10.1111/j.1365-2486.2006.01223.x 10.1016/j.rse.2005.03.008 10.3390/rs10040635 10.3390/rs10060890 10.1631/jzus.B1500087 10.1016/j.isprsjprs.2017.07.006 10.3390/rs6021367 10.1175/1520-0450(1994)033<0118:AMFDTS>2.0.CO;2 10.1016/j.rse.2014.03.001 10.1016/S0034-4257(96)00067-3 10.3390/rs6076680 10.1016/j.agrformet.2011.07.003 10.1016/j.rse.2011.10.014 10.1080/17538947.2013.860196 10.1029/2006JG000217 10.1525/bio.2010.60.3.3 10.1080/014311600209814 10.1016/j.rse.2016.02.018 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright Elsevier BV Feb 2020 |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright Elsevier BV Feb 2020 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| DOI | 10.1016/j.rse.2019.111511 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| ExternalDocumentID | 10_1016_j_rse_2019_111511 S0034425719305309 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 41~ 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ VOH WH7 WUQ XOL ZCA ZMT ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c424t-84c05f45743c769d7c6f7b16dba7fd294e03034c591f8300f27a58c94e98f9413 |
| ISICitedReferencesCount | 618 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509819300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Wed Oct 01 14:00:55 EDT 2025 Wed Aug 13 11:02:37 EDT 2025 Tue Nov 18 22:53:36 EST 2025 Sat Nov 29 07:29:06 EST 2025 Fri Feb 23 02:48:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Phenological metrics extraction Land surface phenology Data smoothing Specie-specific phenology Remote sensing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c424t-84c05f45743c769d7c6f7b16dba7fd294e03034c591f8300f27a58c94e98f9413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2352366194 |
| PQPubID | 2045405 |
| ParticipantIDs | proquest_miscellaneous_2352441441 proquest_journals_2352366194 crossref_citationtrail_10_1016_j_rse_2019_111511 crossref_primary_10_1016_j_rse_2019_111511 elsevier_sciencedirect_doi_10_1016_j_rse_2019_111511 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Liu, Hill, Zhang, Wang, Richardson, Hufkens, Filippa, Baldocchi, Ma, Verfaillie (bib116) 2017; 237–238 Thompson, Wehmanen (bib172) 1979; 45 Sakamoto, Gitelson, Arkebauer (bib163) 2013; 131 Cleveland, Devlin (bib26) 1988; 83 Nasahara, Nagai (bib141) 2015; 30 Migliavacca, Galvagno, Cremonese, Rossini, Meroni, Sonnentag, Cogliati, Manca, Diotri, Busetto (bib248) 2011; 10 Jin, Jönsson, Bolmgren, Langvall, Eklundh (bib90) 2017; 198 Wingate, Ogée, Cremonese, Filippa, Mizunuma, Migliavacca, Moisy, Wilkinson, Moureaux, Wohlfahrt (bib205) 2015; 12 Dash, Curran (bib28) 2004 Sonnentag, Hufkens, Teshera-Sterne, Young, Friedl, Braswell, Milliman, O Keefe, Richardson (bib166) 2012; 152 Wu, Chen, Black, Price, Kurz, Desai, Gonsamo, Jassal (bib238) 2013; 22 Zhang, Friedl, Schaaf (bib223) 2009; 30 Holben (bib75) 1986; 7 Zhou, Rover, Brown, Worstell, Howard, Wu, Gallant, Rundquist, Burke (bib235) 2019; 11 Jönsson, Eklundh (bib95) 2004; 30 He, Bo, Jong, Li, Zhu, Cheng (bib67) 2015; 36 Chen, Wang, Chen, Wang, Shen (bib24) 2018; 211 Beurs, Henebry (bib13) 2010 Gao, Hilker, Zhu, Anderson, Masek, Wang, Yang (bib53) 2015; 3 Mobasheri, Chahardoli, Farajzadeh (bib132) 2010; 12 Mckellip, Ross, Spruce, Smoot, Ryan, Gasser, Prados, Vaughan (bib125) 2010 Xue, Du, Feng (bib212) 2014; 7 Gonsamo, Chen, Price, Kurz, Wu (bib59) 2012; 117 Moura, Galvão, Hilker, Jin, Saleska, Amaral, Nelson, Lopes, Wiedeman, Prohaska (bib137) 2017; 131 Jia, Liang, Wei, Yao, Su, Jiang, Wang (bib85) 2014; 6 Jönsson, Cai, Melaas, Friedl, Eklundh (bib96) 2018; 10 Rodrigues, Marcal, Cunha (bib154) 2012 Reed, Brown, VanderZee, Loveland, Merchant, Ohlen (bib150) 1994; 5 Verstraete, Gobron, Aussedat, Robustelli, Pinty, Widlowski, Taberner (bib182) 2008; 41 Rouse (bib157) 1973; vol. 1 Sakamoto (bib160) 2018; 138 Yang, Wu, Zhang, Zeng (bib215) 2016; 16 Lovell, Graetz (bib119) 2001; 22 White, De Beurs, Didan, Inouye, Richardson, Jensen, O'Keefe, Zhang, Nemani, Van Leeuwen (bib203) 2009; 15 Yang, Shao, Li, Liu, Liu, Brian (bib246) 2017; 195 Vrieling, Leeuw, Said (bib186) 2013; 5 Boyd, Almond, Dash, Curran, Hill (bib15) 2011; 32 Melaas, Sulla-Menashe, Gray, Black, Morin, Richardson, Friedl (bib129) 2016; 186 Ji, Brown (bib84) 2017 Hou, Gao, Zheng, Xu (bib76) 2014; 35 Zhang, Friedl, Schaaf (bib222) 2006; 111 Garrity, Bohrer, Maurer, Mueller, Vogel, Curtis (bib55) 2011; 151 D'Odorico, Gonsamo, Gough, Bohrer, Morison, Wilkinson, Hanson, Gianelle, Fuentes, Buchmann (bib27) 2015; 214-215 Myneni, Keeling, Tucker, Asrar, Nemani (bib139) 1997; 386 Henebry, Beurs (bib68) 2013 Shen, Tang, Chen, Zhu, Zheng (bib165) 2011; 151 Peltoniemi, Aurela, Böttcher, Kolari, Loehr, Hokkanen, Karhu, Linkosalmi, Tanis, Metsämäki (bib147) 2018; 249 Shabanov, Zhou, Knyazikhin, Myneni (bib243) 2002; 1 Diao (bib37) 2019; 229 Boschetti, Stroppiana, Brivio, Bocchi (bib14) 2009; 30 Friend, Arneth, Kiang, Lomas, Ogee, Rodenbeckk, Running, Santaren, Sitch, Viovy (bib48) 2010; 13 Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bib161) 2005; 96 Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bib162) 2010; 114 Hird, Mcdermid (bib72) 2009; 113 Boyte, Wylie (bib244) 2018 McMaster, White, Weiss, Baenziger, Wilhelm, Porter, Jamieson (bib126) 2008 Richardson, Wiegand (bib151) 1978 Fisher, Mustard, Vadeboncoeur (bib47) 2006; 100 Meroni, Verstraete, Rembold, Urbano, Kayitakire (bib131) 2014; 35 Townshend, Justice, Li, Gurney, Mcmanus (bib176) 1991; 35 Udelhoven (bib178) 2011; 4 Gao (bib52) 1996; 58 Atkinson, Jeganathan, Dash, Atzberger (bib7) 2012; 123 Richardson, Jenkins, Braswel, Hollinger, Ollinger, Smith (bib249) 2007; 2 Melaas, Friedl, Zhu (bib128) 2013; 132 Richardson, Hufkens, Milliman, Frolking (bib153) 2018; 8 Cao, Chen, Shen, Chen, Yang (bib21) 2018; 217 Pastick, Wylie, Wu (bib242) 2018; 10 Zhang, Goldberg, Yu (bib224) 2012; 158-159 Graham, Riordan, Yuen, Estrin, Rundel (bib60) 2010; 16 Kang, Running, Lim, Zhao, Park, Loehman (bib100) 2003; 86 Huang, Shen, Long, Wu, Shih, Zheng, Yen, Chi, Liu (bib78) 1998; 454 Martínez, Gilabert (bib123) 2009; 113 de Beurs, Henebry (bib32) 2010 Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bib22) 2004; 91 Wu (bib206) 1993; 33 Kandasamy, Baret, Verger, Neveux (bib99) 2013; 10 Li, Roy (bib245) 2017 Park, Tateishi, Matsuoka (bib241) 1999; 38 Zheng, Wu, Zhang, Zeng (bib231) 2016; 16 Wu, Hou, Peng, Gonsamo, Xu (bib208) 2016; 216 Wang, Li, Liu, Zhong, Wu, Xia (bib197) 2017; 17 Liang, Schwartz, Fei (bib109) 2011; 115 Wu, Gonsamo, Gough, Chen, Xu (bib207) 2014; 147 Araya, Ostendorf, Lyle, Lewis (bib5) 2018; 46 Dash, Jeganathan, Atkinson (bib29) 2010; 114 Los (bib118) 1998; 36 Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bib210) 2019; 225 Tucker (bib177) 1979; 8 Hermance (bib69) 2007; 28 Jin, Xu (bib89) 2013; 10 Arora, Boer (bib6) 2005; 11 Tian, Fensholt, Verbesselt, Grogan, Horion, Wang (bib174) 2015; 163 Malik, Shakir, Ajmal, Khan, Khan (bib122) 2017 Beck, Jönsson, Høgda, Karlsen, Eklundh, Skidmore (bib11) 2007; 28 Hufkens, Friedl, Sonnentag, Braswell, Milliman, Richardson (bib81) 2012; 117 Claverie, Ju, Masek, Dungan, J., F. Vermote, Roger, Skakun, Justice (bib25) 2018; 219 Delbart, Beaubien, Kergoat, Toan (bib36) 2015; 160 Brown, de Beurs, Marshall (bib240) 2012; 11 Liu, Wu, Peng, Xu, Gonsamo, Jassal, Arain, Lu, Fang, Chen (bib114) 2016; 176 Tateishi, Ebata (bib170) 2004; 25 White, Pontius, Schaberg (bib204) 2014; 148 Sellers, Tucker, Collatz, Los, Justice, Dazlich, Randall (bib164) 1994; 15 Viña, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bib183) 2004; 2 Delbart, Kergoat, Toan, Lhermitte, Picard (bib35) 2005; 97 Cai, Jönsson, Jin, Eklundh (bib19) 2017; 9 Gao, Anderson, Zhang, Yang, Alfieri, Kustas, Mueller, Johnson, Prueger (bib54) 2017; 188 Kobayashi, Yunus, Nagai, Sugiura, Kim, Dam, Nagano, Zona, Harazono, Bret-Harte (bib107) 2016; 177 Verhegghen, Bontemps, Defourny (bib181) 2014; 35 Watson (bib200) 1947; 11 Zhang, Qi (bib220) 2005; 160 Templ, Koch, Bolmgren, Ungersb Ck, Paul, Scheifinger, Rutishauser, Busto, Chmielewski, Hájková (bib171) 2018; 62 Houborg, Mccabe (bib77) 2018; 10 Lieth, Schwartz (bib111) 1997 Eklundh, Jönsson (bib41) 2015 Guyon, Guillot, Vitasse, Cardot, Hagolle, Delzon, Wigneron (bib62) 2011; 115 Cao, Chen, Shen, Tang (bib20) 2015; 200 Julien, Sobrino (bib97) 2010; 114 Elmore, Guinn, Minsley, Richardson (bib43) 2012; 18 Liu, Liang, Schwartz, Donnelly, Wang, Schaaf, Liu (bib113) 2015; 160 Hermance, Jacob, Bradley, Mustard (bib70) 2007; 45 Hodges (bib73) 1991 Moody, Johnson (bib133) 2001; 75 Huete, Justice, Leeuwen (bib80) 1999 Wagenseil, Samimi (bib189) 2006; 27 Antonucci, Rossi, Deslauriers, Morin, Lombardi, Marchetti, Tognetti (bib4) 2017; 233 Balzter, Gerard, George, Weedon, Grey, Combal, Bartholomé, Bartalev, Los (bib9) 2007; 20 Huete (bib79) 1988; 25 Mcmaster, Wilhelm (bib247) 1997; 4 Eklundh, J O Nsson (bib42) 2012 Hanes, Schwartz (bib66) 2011; 105 Lieth (bib110) 1974 Katharine, Jennifer, Paul (bib102) 2014; 148 Klosterman, Melaas, Wang, Martinez, Richardson (bib106) 2018; 248 Brisson, Gary, Justes, Roche, Mary, Ripoche (bib17) 2003; 18 Ganguly, Friedl, Tan, Zhang, Verma (bib51) 2010; 114 Sakamoto (bib159) 2018; 138 Zhang, Goldberg (bib219) 2011; 115 Zhang, Song, Band, Sun, Li (bib227) 2017; 191 Tong, Tian, Brandt, Liu, Zhang, Fensholt (bib175) 2019; 232 Nijland, Bolton, Coops, Stenhouse (bib144) 2016; 177 Vintrou, Bégué, Baron, Saad, Lo Seen, Traoré (bib239) 2014; 6 de Beurs, Henebry (bib30) 2004; 89 McNairn, Jiao, Pacheco, Sinha, Tan, Li (bib127) 2018; 219 Lloyd (bib117) 1990; 11 Lu, Wang, Guo, Li (bib120) 2014; 29 Moore, Brown, Keenan, Duursma, van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, van Gorsel, Liddell (bib134) 2016; 13 Wagenseil, Samimi (bib190) 2006; 27 Li, Zhou, Asrar, Mao, Li, Li (bib108) 2017; 23 Badhwar (bib8) 1984; 5 Rodrigues, Marcal, Cunha (bib155) 2013; 51 White, Thornton, Running (bib202) 1997; 11 Peng, Zhang, Zhang, Liu, Liu, Huete, Huang, Wang, Luo, Zhang (bib148) 2017; 132 Duarte, Teodoro, Monteiro, Cunha, Gonçalves (bib38) 2018; 148 Verger, Baret, Weiss (bib180) 2011; 115 Keenan, Gray, Friedl, Toomey, Bohrer, Hollinger, Munger, O Keefe, Schmid, Wing (bib103) 2014; 4 Heumann, Seaquist, Eklundh, Jönsson (bib71) 2007; 108 An, Zhang, Chen, Yan, Henebry (bib3) 2018; 10 Brown, Wardlow, Tadesse, Hayes, Reed (bib18) 2008; 45 Myneni (bib138) 2003 Jian, Roy (bib86) 2017; 9 Chen, Deng, Chen (bib23) 2006; 44 Nagol, Vermote, Prince (bib140) 2014; 6 Zhu, Pan, He, Wang, Mou, Liu (bib237) 2012; 50 Yan, Zhang, Yu, Guo, Hanan (bib213) 2016; 121 Motohka, Nasahara, Oguma, Tsuchida (bib135) 2010; 2 Galford, Mustard, Melillo, Gendrin, Cerri, Cerri (bib50) 2008; 112 Jeong, Schimel, Frankenberg, Drewry, Fisher, Verma, Berry, Lee, Joiner (bib83) 2017; 190 Ahl, Gower, Burrows, Shabanov, Myneni, Knyazikhin (bib2) 2006; 104 Xu, Conrad, Doktor (bib211) 2017; 9 Emelyanova, McVicar, Van Niel, Li, van Dijk (bib44) 2013; 133 Berra, Gaulton, Barr (bib12) 2019; 223 Wardlow, Egbert (bib198) 2008; 112 Roerink, Menenti, Verhoef (bib156) 2000; 21 Jiang, Huete, Didan, Miura (bib87) 2008; 112 Liu, Cao, Shen, Chen, Wang, Zhang (bib250) 2019; 11 Tan, Morisette, Wolfe, Gao, Ederer, Nightingale, Pedelty (bib169) 2011; 4 Guzman, Dash, Atkinson (bib63) 2018; 205 Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt (bib91) 2003; 18 Meroni, Fasbender, Kayitakire, Pini, Rembold, Urbano, Verstraete (bib130) 2013 Zhang, Liu, Liu, Senthilnath, Wang, Moon, Henebry, Friedl, Schaaf (bib229) 2018; 216 Vrieling, Meroni, Darvishzadeh, Skidmore, Wang, Zurita-Milla, Oosterbeek, O'Connor, Paganini (bib188) 2018 Zhang, Jayavelu, Liu, Friedl, Henebry, Liu, Schaaf, Richardson, Gray (bib228) 2018; 256-257 Funk, Budde (bib49) 2009; 113 Zhou, Jia, Menenti (bib234) 2015; 163 Delbart, Kergoat, Le Toan, Lhermitte, Picard (bib34) 2005; 97 Vliet, de Groot, Bellens, Braun, Bruegger, Bruns, Clevers, Estreguil, Flechsig, Jeanneret (bib185) 2003 Wang, Huang Eklundh (10.1016/j.rse.2019.111511_bib41) 2015 Moore (10.1016/j.rse.2019.111511_bib134) 2016; 13 Wingate (10.1016/j.rse.2019.111511_bib205) 2015; 12 Shen (10.1016/j.rse.2019.111511_bib165) 2011; 151 Mcmaster (10.1016/j.rse.2019.111511_bib247) 1997; 4 Wulder (10.1016/j.rse.2019.111511_bib210) 2019; 225 Viovy (10.1016/j.rse.2019.111511_bib184) 1992; 13 Houborg (10.1016/j.rse.2019.111511_bib77) 2018; 10 Richardson (10.1016/j.rse.2019.111511_bib151) 1978 Wang (10.1016/j.rse.2019.111511_bib194) 2012; 119 Chen (10.1016/j.rse.2019.111511_bib22) 2004; 91 Boschetti (10.1016/j.rse.2019.111511_bib14) 2009; 30 Xue (10.1016/j.rse.2019.111511_bib212) 2014; 7 Nagol (10.1016/j.rse.2019.111511_bib140) 2014; 6 Sakamoto (10.1016/j.rse.2019.111511_bib159) 2018; 138 Klosterman (10.1016/j.rse.2019.111511_bib104) 2014; 11 Moody (10.1016/j.rse.2019.111511_bib133) 2001; 75 Vrieling (10.1016/j.rse.2019.111511_bib186) 2013; 5 Wu (10.1016/j.rse.2019.111511_bib238) 2013; 22 Claverie (10.1016/j.rse.2019.111511_bib25) 2018; 219 White (10.1016/j.rse.2019.111511_bib202) 1997; 11 Funk (10.1016/j.rse.2019.111511_bib49) 2009; 113 Delbart (10.1016/j.rse.2019.111511_bib34) 2005; 97 Jönsson (10.1016/j.rse.2019.111511_bib96) 2018; 10 Wu (10.1016/j.rse.2019.111511_bib208) 2016; 216 An (10.1016/j.rse.2019.111511_bib3) 2018; 10 Ma (10.1016/j.rse.2019.111511_bib121) 2006; 37 Zhang (10.1016/j.rse.2019.111511_bib228) 2018; 256-257 Julitta (10.1016/j.rse.2019.111511_bib98) 2014; 198-199 Huete (10.1016/j.rse.2019.111511_bib80) 1999 Zhou (10.1016/j.rse.2019.111511_bib234) 2015; 163 Jin (10.1016/j.rse.2019.111511_bib90) 2017; 198 Melaas (10.1016/j.rse.2019.111511_bib128) 2013; 132 Beurs (10.1016/j.rse.2019.111511_bib13) 2010 Liu (10.1016/j.rse.2019.111511_bib116) 2017; 237–238 Katharine (10.1016/j.rse.2019.111511_bib102) 2014; 148 Cai (10.1016/j.rse.2019.111511_bib19) 2017; 9 Richardson (10.1016/j.rse.2019.111511_bib249) 2007; 2 Beck (10.1016/j.rse.2019.111511_bib11) 2007; 28 White (10.1016/j.rse.2019.111511_bib203) 2009; 15 Wardlow (10.1016/j.rse.2019.111511_bib198) 2008; 112 Tan (10.1016/j.rse.2019.111511_bib169) 2011; 4 Jiang (10.1016/j.rse.2019.111511_bib87) 2008; 112 Delbart (10.1016/j.rse.2019.111511_bib35) 2005; 97 Yan (10.1016/j.rse.2019.111511_bib213) 2016; 121 Ganguly (10.1016/j.rse.2019.111511_bib51) 2010; 114 Huete (10.1016/j.rse.2019.111511_bib79) 1988; 25 Gao (10.1016/j.rse.2019.111511_bib53) 2015; 3 Zhang (10.1016/j.rse.2019.111511_bib221) 2003; 84 Richardson (10.1016/j.rse.2019.111511_bib152) 2011 Zhang (10.1016/j.rse.2019.111511_bib223) 2009; 30 Fisher (10.1016/j.rse.2019.111511_bib47) 2006; 100 Jeong (10.1016/j.rse.2019.111511_bib83) 2017; 190 Liu (10.1016/j.rse.2019.111511_bib114) 2016; 176 Wang (10.1016/j.rse.2019.111511_bib197) 2017; 17 Lieth (10.1016/j.rse.2019.111511_bib111) 1997 Ahl (10.1016/j.rse.2019.111511_bib2) 2006; 104 de Beurs (10.1016/j.rse.2019.111511_bib30) 2004; 89 Nemani (10.1016/j.rse.2019.111511_bib143) 2009; 113 Dash (10.1016/j.rse.2019.111511_bib28) 2004 Zhang (10.1016/j.rse.2019.111511_bib227) 2017; 191 Dash (10.1016/j.rse.2019.111511_bib29) 2010; 114 Jia (10.1016/j.rse.2019.111511_bib85) 2014; 6 Araya (10.1016/j.rse.2019.111511_bib5) 2018; 46 Jin (10.1016/j.rse.2019.111511_bib89) 2013; 10 van Leeuwen (10.1016/j.rse.2019.111511_bib179) 2006; 100 Motohka (10.1016/j.rse.2019.111511_bib135) 2010; 2 Pastick (10.1016/j.rse.2019.111511_bib242) 2018; 10 Zhang (10.1016/j.rse.2019.111511_bib219) 2011; 115 Tian (10.1016/j.rse.2019.111511_bib174) 2015; 163 Lovell (10.1016/j.rse.2019.111511_bib119) 2001; 22 Vrieling (10.1016/j.rse.2019.111511_bib187) 2017; 59 Li (10.1016/j.rse.2019.111511_bib245) 2017 Hall-Beyer (10.1016/j.rse.2019.111511_bib64) 2003; 41 Meroni (10.1016/j.rse.2019.111511_bib131) 2014; 35 Pan (10.1016/j.rse.2019.111511_bib146) 2015; 34 Kang (10.1016/j.rse.2019.111511_bib100) 2003; 86 Zhu (10.1016/j.rse.2019.111511_bib237) 2012; 50 Los (10.1016/j.rse.2019.111511_bib118) 1998; 36 Meroni (10.1016/j.rse.2019.111511_bib130) 2013 Onojeghuo (10.1016/j.rse.2019.111511_bib145) 2018 Yan (10.1016/j.rse.2019.111511_bib214) 2016; 54 Jin (10.1016/j.rse.2019.111511_bib88) 2014; 152 Walther (10.1016/j.rse.2019.111511_bib193) 2015; 22 Brown (10.1016/j.rse.2019.111511_bib18) 2008; 45 Liang (10.1016/j.rse.2019.111511_bib109) 2011; 115 Hufkens (10.1016/j.rse.2019.111511_bib81) 2012; 117 Sonnentag (10.1016/j.rse.2019.111511_bib166) 2012; 152 Antonucci (10.1016/j.rse.2019.111511_bib4) 2017; 233 Liu (10.1016/j.rse.2019.111511_bib115) 2017; 194 Richardson (10.1016/j.rse.2019.111511_bib153) 2018; 8 Duarte (10.1016/j.rse.2019.111511_bib38) 2018; 148 Keenan (10.1016/j.rse.2019.111511_bib103) 2014; 4 Holben (10.1016/j.rse.2019.111511_bib75) 1986; 7 Heumann (10.1016/j.rse.2019.111511_bib71) 2007; 108 Diao (10.1016/j.rse.2019.111511_bib37) 2019; 229 Townshend (10.1016/j.rse.2019.111511_bib176) 1991; 35 Malik (10.1016/j.rse.2019.111511_bib122) 2017 Gonsamo (10.1016/j.rse.2019.111511_bib58) 2016; 182 Hanes (10.1016/j.rse.2019.111511_bib66) 2011; 105 Verstraete (10.1016/j.rse.2019.111511_bib182) 2008; 41 Fisher (10.1016/j.rse.2019.111511_bib46) 2007; 109 Park (10.1016/j.rse.2019.111511_bib241) 1999; 38 White (10.1016/j.rse.2019.111511_bib201) 2006; 104 Gitelson (10.1016/j.rse.2019.111511_bib56) 2004; 161 Badhwar (10.1016/j.rse.2019.111511_bib8) 1984; 5 Gobron (10.1016/j.rse.2019.111511_bib57) 2006; 111 Ji (10.1016/j.rse.2019.111511_bib84) 2017 Templ (10.1016/j.rse.2019.111511_bib171) 2018; 62 D'Odorico (10.1016/j.rse.2019.111511_bib27) 2015; 214-215 Cleveland (10.1016/j.rse.2019.111511_bib26) 1988; 83 Klosterman (10.1016/j.rse.2019.111511_bib105) 2014; 11 Balzter (10.1016/j.rse.2019.111511_bib9) 2007; 20 Wardlow (10.1016/j.rse.2019.111511_bib199) 2006; 72 Kariyeva (10.1016/j.rse.2019.111511_bib101) 2011; 3 Peng (10.1016/j.rse.2019.111511_bib148) 2017; 132 Yu (10.1016/j.rse.2019.111511_bib216) 2003; 87 Moura (10.1016/j.rse.2019.111511_bib137) 2017; 131 Sakamoto (10.1016/j.rse.2019.111511_bib160) 2018; 138 Gao (10.1016/j.rse.2019.111511_bib52) 1996; 58 Hou (10.1016/j.rse.2019.111511_bib76) 2014; 35 Wu (10.1016/j.rse.2019.111511_bib207) 2014; 147 Mobasheri (10.1016/j.rse.2019.111511_bib132) 2010; 12 Galford (10.1016/j.rse.2019.111511_bib50) 2008; 112 Henebry (10.1016/j.rse.2019.111511_bib68) 2013 Zeng (10.1016/j.rse.2019.111511_bib217) 2016; 181 Vliet (10.1016/j.rse.2019.111511_bib185) 2003 Viña (10.1016/j.rse.2019.111511_bib183) 2004; 2 Watson (10.1016/j.rse.2019.111511_bib200) 1947; 11 Liu (10.1016/j.rse.2019.111511_bib250) 2019; 11 WALKER (10.1016/j.rse.2019.111511_bib191) 2012; 117 Tateishi (10.1016/j.rse.2019.111511_bib170) 2004; 25 Hermance (10.1016/j.rse.2019.111511_bib69) 2007; 28 Melaas (10.1016/j.rse.2019.111511_bib129) 2016; 186 Julien (10.1016/j.rse.2019.111511_bib97) 2010; 114 Han (10.1016/j.rse.2019.111511_bib65) 2018; 427 Reed (10.1016/j.rse.2019.111511_bib150) 1994; 5 Zhang (10.1016/j.rse.2019.111511_bib222) 2006; 111 Myneni (10.1016/j.rse.2019.111511_bib138) 2003 Walker (10.1016/j.rse.2019.111511_bib192) 2014; 144 de Beurs (10.1016/j.rse.2019.111511_bib31) 2005; 11 Jones (10.1016/j.rse.2019.111511_bib92) 2011; 115 Jönsson (10.1016/j.rse.2019.111511_bib94) 2002; 40 Boyte (10.1016/j.rse.2019.111511_bib16) 2015; 8 Guan (10.1016/j.rse.2019.111511_bib61) 2014; 52 Udelhoven (10.1016/j.rse.2019.111511_bib178) 2011; 4 Brisson (10.1016/j.rse.2019.111511_bib17) 2003; 18 Wang (10.1016/j.rse.2019.111511_bib195) 2013; 138 Berra (10.1016/j.rse.2019.111511_bib12) 2019; 223 Islam (10.1016/j.rse.2019.111511_bib82) 2008; 45 Guyon (10.1016/j.rse.2019.111511_bib62) 2011; 115 Rodrigues (10.1016/j.rse.2019.111511_bib154) 2012 Klosterman (10.1016/j.rse.2019.111511_bib106) 2018; 248 Roerink (10.1016/j.rse.2019.111511_bib156) 2000; 21 Verhegghen (10.1016/j.rse.2019.111511_bib181) 2014; 35 Arora (10.1016/j.rse.2019.111511_bib6) 2005; 11 He (10.1016/j.rse.2019.111511_bib67) 2015; 36 Wu (10.1016/j.rse.2019.111511_bib206) 1993; 33 Sakamoto (10.1016/j.rse.2019.111511_bib162) 2010; 114 Beck (10.1016/j.rse.2019.111511_bib10) 2006; 99 Hodges (10.1016/j.rse.2019.111511_bib73) 1991 White (10.1016/j.rse.2019.111511_bib204) 2014; 148 Zhang (10.1016/j.rse.2019.111511_bib220) 2005; 160 Wang (10.1016/j.rse.2019.111511_bib196) 2015; 16 McNairn (10.1016/j.rse.2019.111511_bib127) 2018; 219 Rodrigues (10.1016/j.rse.2019.111511_bib155) 2013; 51 Zheng (10.1016/j.rse.2019.111511_bib231) 2016; 16 Brown (10.1016/j.rse.2019.111511_bib240) 2012; 11 Vintrou (10.1016/j.rse.2019.111511_bib239) 2014; 6 Li (10.1016/j.rse.2019.111511_bib108) 2017; 23 Wu (10.1016/j.rse.2019.111511_bib209) 2017; 233 Rouse (10.1016/j.rse.2019.111511_bib157) 1973; vol. 1 Nasahara (10.1016/j.rse.2019.111511_bib141) 2015; 30 Nijland (10.1016/j.rse.2019.111511_bib144) 2016; 177 Sakamoto (10.1016/j.rse.2019.111511_bib161) 2005; 96 Sakamoto (10.1016/j.rse.2019.111511_bib163) 2013; 131 Duchemin (10.1016/j.rse.2019.111511_bib39) 1999; 67 Yang (10.1016/j.rse.2019.111511_bib215) 2016; 16 Jian (10.1016/j.rse.2019.111511_bib86) 2017; 9 Moulin (10.1016/j.rse.2019.111511_bib136) 1997; 10 Verger (10.1016/j.rse.2019.111511_bib180) 2011; 115 Vrieling (10.1016/j.rse.2019.111511_bib188) 2018 Eilers (10.1016/j.rse.2019.111511_bib40) 2003; 75 Emelyanova (10.1016/j.rse.2019.111511_bib44) 2013; 133 Boyte (10.1016/j.rse.2019.111511_bib244) 2018 Shabanov (10.1016/j.rse.2019.111511_bib243) 2002; 1 Zhao (10.1016/j.rse.2019.111511_bib230) 2011 Guzman (10.1016/j.rse.2019.111511_bib63) 2018; 205 Lloyd (10.1016/j.rse.2019.111511_bib117) 1990; 11 Gonsamo (10.1016/j.rse.2019.111511_bib59) 2012; 117 Zhang (10.1016/j.rse.2019.111511_bib224) 2012; 158-159 Wagenseil (10.1016/j.rse.2019.111511_bib189) 2006; 27 Adole (10.1016/j.rse.2019.111511_bib1) 2016; 34 Delbart (10.1016/j.rse.2019.111511_bib36) 2015; 160 Thorpe (10.1016/j.rse.2019.111511_bib173) 2016; 7 Hird (10.1016/j.rse.2019.111511_bib72) 2009; 113 Lu (10.1016/j.rse.2019.111511_bib120) 2014; 29 Zhang (10.1016/j.rse.2019.111511_bib229) 2018; 216 Martínez (10.1016/j.rse.2019.111511_bib123) 2009; 113 Yang (10.1016/j.rse.2019.111511_bib246) 2017; 195 Migliavacca (10.1016/j.rse.2019.111511_bib248) 2011; 10 Kobayashi (10.1016/j.rse.2019.111511_bib107) 2016; 177 Tucker (10.1016/j.rse.2019.1115 |
| References_xml | – volume: 21 start-page: 1911 year: 2000 end-page: 1917 ident: bib156 article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series publication-title: Int. J. Remote Sens. – volume: 22 start-page: 2649 year: 2001 end-page: 2654 ident: bib119 article-title: Filtering pathfinder AVHRR land NDVI data for Australia publication-title: Int. J. Remote Sens. – volume: 37 start-page: 835 year: 2006 end-page: 840 ident: bib121 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Adv. Space Res. – volume: 35 start-page: 243 year: 1991 end-page: 255 ident: bib176 article-title: Global land cover classification by remote sensing: present capabilities and future possibilities publication-title: Remote Sens. Environ. – volume: vol. 1 start-page: 309 year: 1973 end-page: 317 ident: bib157 article-title: Monitoring Vegetation Systems in the Great Plains with ERTS – volume: 219 start-page: 145 year: 2018 end-page: 161 ident: bib25 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. – volume: 35 start-page: 2472 year: 2014 end-page: 2492 ident: bib131 article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa publication-title: Int. J. Remote Sens. – volume: 181 start-page: 237 year: 2016 end-page: 250 ident: bib217 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – volume: 105 start-page: 37 year: 2011 end-page: 50 ident: bib66 article-title: Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature publication-title: Theor. Appl. Climatol. – volume: 45 start-page: 3264 year: 2007 end-page: 3276 ident: bib70 article-title: Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: bib145 article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series publication-title: GIScience Remote Sens. – volume: 97 start-page: 26 year: 2005 end-page: 38 ident: bib35 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. – start-page: 7 year: 1991 end-page: 13 ident: bib73 article-title: Temperature and Water Stress Effects on Phenology – volume: 59 start-page: 19 year: 2017 end-page: 30 ident: bib187 article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2017 ident: bib245 article-title: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring publication-title: GSCE Faculty Publications – start-page: 517 year: 2011 ident: bib152 article-title: PhenoCam: a continental-scale observatory for monitoring the phenology of terrestrial vegetation publication-title: Am. Geophys. Union, Fall Meet. – volume: 115 start-page: 2460 year: 2011 end-page: 2470 ident: bib180 article-title: A multisensor fusion approach to improve LAI time series publication-title: Remote Sens. Environ. – volume: 91 start-page: 332 year: 2004 end-page: 344 ident: bib22 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter publication-title: Remote Sens. Environ. – volume: 138 start-page: 176 year: 2018 end-page: 192 ident: bib159 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 111 start-page: 2943 year: 2006 end-page: 2979 ident: bib57 article-title: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground‐based estimations publication-title: J. Geophys. Res. Atmos. – volume: 4 start-page: 361 year: 2011 end-page: 371 ident: bib169 article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 229 start-page: 179 year: 2019 end-page: 192 ident: bib37 article-title: Complex network-based time series remote sensing model in monitoring the fall foliage transition date for peak coloration publication-title: Remote Sens. Environ. – volume: 225 start-page: 127 year: 2019 end-page: 147 ident: bib210 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. – volume: 16 start-page: 3014 year: 2010 end-page: 3023 ident: bib60 article-title: Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system publication-title: Glob. Chang. Biol. – volume: 219 start-page: 196 year: 2018 end-page: 205 ident: bib127 article-title: Estimating canola phenology using synthetic aperture radar publication-title: Remote Sens. Environ. – volume: 9 start-page: 902 year: 2017 ident: bib86 article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. – volume: 48 start-page: 220 year: 1994 end-page: 230 ident: bib45 article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters publication-title: Remote Sens. Environ. – volume: 100 start-page: 265 year: 2006 end-page: 279 ident: bib47 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. – volume: 86 start-page: 232 year: 2003 end-page: 242 ident: bib100 article-title: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index publication-title: Remote Sens. Environ. – volume: 44 start-page: 2230 year: 2006 end-page: 2238 ident: bib23 article-title: Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 161 start-page: 165 year: 2004 end-page: 173 ident: bib56 article-title: Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. – volume: 10 year: 2018 ident: bib3 article-title: An exploration of terrain effects on land surface phenology across the Qinghai–Tibet plateau using Landsat ETM+ and OLI data publication-title: Remote Sens. – volume: 117 start-page: 381 year: 2012 end-page: 393 ident: bib191 article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology publication-title: Remote Sens. Environ. – volume: 176 start-page: 152 year: 2016 end-page: 162 ident: bib114 article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America publication-title: Remote Sens. Environ. – volume: 35 start-page: 3316 year: 2014 end-page: 3330 ident: bib76 article-title: Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data publication-title: Int. J. Remote Sens. – volume: 58 start-page: 257 year: 1996 end-page: 266 ident: bib52 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. – volume: 11 start-page: 174 year: 2012 end-page: 183 ident: bib240 article-title: Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years publication-title: Remote Sensing of Environment – volume: 33 start-page: 118 year: 1993 end-page: 128 ident: bib206 article-title: A method for determing the sensor degradation rates of NOAA AVHRR channels 1 and 2 publication-title: Q. J. Appl. Meteorol. – volume: 11 year: 2019 ident: bib250 article-title: How does scale effect influence spring vegetation phenology estimated from satellited-derived vegetation indexes? publication-title: Remote sensing – volume: 5 start-page: 703 year: 1994 end-page: 714 ident: bib150 article-title: Measuring phenological variability from satellite imagery publication-title: J. Veg. Sci. – volume: 41 start-page: 2568 year: 2003 end-page: 2574 ident: bib64 article-title: Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 148 start-page: 97 year: 2014 end-page: 107 ident: bib204 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. – volume: 3 start-page: 47 year: 2015 end-page: 60 ident: bib53 article-title: Fusing Landsat and MODIS data for vegetation monitoring publication-title: IEEE Geosci. Remote Sens. Mag. – volume: 237–238 start-page: 311 year: 2017 end-page: 325 ident: bib116 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. – volume: 11 start-page: 39 year: 2005 end-page: 59 ident: bib6 article-title: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models publication-title: Glob. Chang. Biol. – volume: 2 start-page: 2369 year: 2010 end-page: 2387 ident: bib135 article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology publication-title: Remote Sens. – volume: 16 start-page: 832 year: 2015 end-page: 844 ident: bib196 article-title: Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images publication-title: J. Zhejiang Univ. - Sci. B – volume: 115 start-page: 1102 year: 2011 end-page: 1114 ident: bib92 article-title: Satellite passive microwave remote sensing for monitoring global land surface phenology publication-title: Remote Sens. Environ. – start-page: 495 year: 2013 end-page: 499 ident: bib130 article-title: Regional drought monitoring using phenologicallytuned biomass production estimates from SPOTVEGETATION FAPAR – start-page: 135 year: 2011 end-page: 150 ident: bib230 article-title: Evaluation of Temporal Resolution Effect in Remote Sensing Based Crop Phenology Detection Studies – start-page: 1 year: 2017 end-page: 18 ident: bib122 article-title: Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan publication-title: Water Resour. Manag. – volume: 138 start-page: 176 year: 2018 end-page: 192 ident: bib160 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 216 year: 2018 ident: bib229 article-title: Generation and evaluation of the VIIRS land surface phenology product publication-title: Remote Sens. Environ. – volume: 160 start-page: 156 year: 2015 end-page: 165 ident: bib113 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. – volume: 45 start-page: 16 year: 2008 end-page: 46 ident: bib18 article-title: The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation publication-title: GIScience Remote Sens. – volume: 112 start-page: 576 year: 2008 end-page: 587 ident: bib50 article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil publication-title: Remote Sens. Environ. – volume: 1 start-page: 115 year: 2002 end-page: 130 ident: bib243 article-title: Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994 publication-title: IEEE Transactions on Geoscience & Remote Sensing – volume: 113 start-page: 1823 year: 2009 end-page: 1842 ident: bib123 article-title: Vegetation dynamics from NDVI time series analysis using the wavelet transform publication-title: Remote Sens. Environ. – volume: 36 start-page: 206 year: 1998 end-page: 213 ident: bib118 article-title: Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 152 start-page: 159 year: 2012 end-page: 177 ident: bib166 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. – volume: 30 start-page: 833 year: 2004 end-page: 845 ident: bib95 article-title: TIMESAT—a program for analyzing time-series of satellite sensor data ☆ publication-title: Comput. Geosci. – volume: 6 start-page: 6680 year: 2014 end-page: 6687 ident: bib140 article-title: Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI data publication-title: Remote Sens. – volume: 11 start-page: 217 year: 1997 end-page: 234 ident: bib202 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Glob. Biogeochem. Cycles – volume: 9 start-page: 1271 year: 2017 ident: bib19 article-title: Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data publication-title: Remote Sens. – volume: 9 start-page: 317 year: 2017 ident: bib168 article-title: Remote sensing daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards publication-title: Remote Sens. – volume: 75 start-page: 305 year: 2001 end-page: 323 ident: bib133 article-title: Land-surface phenologies from AVHRR using the discrete fourier transform publication-title: Remote Sens. Environ. – volume: 96 start-page: 366 year: 2005 end-page: 374 ident: bib161 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. – volume: 34 start-page: 117 year: 2016 end-page: 128 ident: bib1 article-title: A systematic review of vegetation phenology in Africa publication-title: Ecol. Inf. – volume: 454 start-page: 903 year: 1998 end-page: 995 ident: bib78 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. – volume: 191 start-page: 145 year: 2017 end-page: 155 ident: bib227 article-title: Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? publication-title: Remote Sens. Environ. – volume: 7 start-page: 1142 year: 2014 end-page: 1156 ident: bib212 article-title: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 151 start-page: 1741 year: 2011 end-page: 1752 ident: bib55 article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange publication-title: Agric. For. Meteorol. – volume: 190 start-page: 318 year: 2017 end-page: 330 ident: bib226 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. – volume: 114 start-page: 1805 year: 2010 end-page: 1816 ident: bib51 article-title: Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product publication-title: Remote Sens. Environ. – volume: 11 start-page: 4305 year: 2014 end-page: 4320 ident: bib105 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences – volume: 75 start-page: 3631 year: 2003 ident: bib40 article-title: A perfect smoother publication-title: Anal. Chem. – volume: 117 start-page: 307 year: 2012 end-page: 321 ident: bib81 article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology publication-title: Remote Sens. Environ. – volume: 132 start-page: 185 year: 2017 end-page: 198 ident: bib148 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 22 start-page: 994 year: 2013 end-page: 1006 ident: bib238 article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn publication-title: Global Ecology and Biogeography – year: 2003 ident: bib185 article-title: The European Phenology Network – volume: 50 start-page: 1085 year: 2012 end-page: 1094 ident: bib237 article-title: A changing-weight filter method for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 3 start-page: 203 year: 2011 end-page: 246 ident: bib101 article-title: Environmental drivers of NDVI-based vegetation phenology in central Asia publication-title: Remote Sens. – volume: 28 start-page: 4311 year: 2007 end-page: 4330 ident: bib11 article-title: A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula publication-title: Int. J. Remote Sens. – year: 1997 ident: bib111 publication-title: Phenology in Seasonal Climates – volume: 198-199 start-page: 116 year: 2014 end-page: 125 ident: bib98 article-title: Using digital camera images to analyse snowmelt and phenology of a subalpine grassland publication-title: Agric. For. Meteorol. – volume: 8 start-page: 118 year: 2015 end-page: 132 ident: bib16 article-title: The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth publication-title: Int. J. Digit. Earth – volume: 23 start-page: 2818 year: 2017 end-page: 2830 ident: bib108 article-title: Response of vegetation phenology to urbanization in the conterminous United States publication-title: Glob. Chang. Biol. – volume: 84 start-page: 471 year: 2003 end-page: 475 ident: bib221 article-title: Monitoring vegetation phenology using MODIS time-series data publication-title: Remote Sens. Environ. – volume: 158-159 start-page: 21 year: 2012 end-page: 29 ident: bib224 article-title: Prototype for monitoring and forecasting fall foliage coloration in real time from satellite data publication-title: Agric. For. Meteorol. – volume: 36 start-page: 300 year: 2015 end-page: 317 ident: bib67 article-title: Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China publication-title: Int. J. Remote Sens. – volume: 256-257 start-page: 137 year: 2018 end-page: 149 ident: bib228 article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery publication-title: Agric. For. Meteorol. – volume: 46 start-page: 45 year: 2018 end-page: 56 ident: bib5 article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery publication-title: Ecol. Inf. – volume: 97 start-page: 26 year: 2005 end-page: 38 ident: bib34 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. – volume: 100 start-page: 67 year: 2006 end-page: 81 ident: bib179 article-title: Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications publication-title: Remote Sens. Environ. – volume: 108 start-page: 385 year: 2007 end-page: 392 ident: bib71 article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005 publication-title: Remote Sens. Environ. – volume: 11 start-page: 779 year: 2005 end-page: 790 ident: bib31 article-title: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects publication-title: Glob. Chang. Biol. – start-page: 277 year: 2008 end-page: 300 ident: bib126 article-title: Simulating Crop Phenological Responses to Water Deficits – volume: 22 year: 2015 ident: bib193 article-title: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests publication-title: Glob. Chang. Biol. – volume: 17 start-page: 1982 year: 2017 ident: bib197 article-title: Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index publication-title: Sensors – volume: 18 start-page: 235 year: 2003 end-page: 265 ident: bib91 article-title: The dssat cropping system model publication-title: Eur. J. Agron. – volume: 114 start-page: 1388 year: 2010 end-page: 1402 ident: bib29 article-title: The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India publication-title: Remote Sens. Environ. – volume: 113 start-page: 1497 year: 2009 end-page: 1509 ident: bib143 article-title: Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS) publication-title: Remote Sens. Environ. – volume: 205 start-page: 71 year: 2018 end-page: 84 ident: bib63 article-title: Remote sensing of mangrove forest phenology and its environmental drivers publication-title: Remote Sens. Environ. – volume: 177 start-page: 13 year: 2016 end-page: 20 ident: bib144 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. – volume: 148 start-page: 97 year: 2014 end-page: 107 ident: bib102 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. – start-page: 4926 year: 2012 end-page: 4929 ident: bib154 article-title: Phenology Parameter Extraction from Time-Series of Satellite Vegetation Index Data Using Phenosat – volume: 163 start-page: 217 year: 2015 end-page: 228 ident: bib234 article-title: Reconstruction of global MODIS NDVI time series: performance of harmonic ANalysis of time series (HANTS) publication-title: Remote Sens. Environ. – volume: 114 start-page: 618 year: 2010 end-page: 625 ident: bib97 article-title: Comparison of cloud-reconstruction methods for time series of composite NDVI data publication-title: Remote Sens. Environ. – volume: 54 start-page: 4867 year: 2016 end-page: 4881 ident: bib214 article-title: A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo basin publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 11 start-page: 2269 year: 1990 end-page: 2279 ident: bib117 article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery publication-title: Remote Sens. – volume: 16 start-page: 2099 year: 2016 ident: bib215 article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products publication-title: Sensors – year: 2013 ident: bib68 article-title: Remote Sensing of Land Surface Phenology: A Prospectus – volume: 217 start-page: 244 year: 2018 end-page: 257 ident: bib21 article-title: A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter publication-title: Remote Sens. Environ. – volume: 8 start-page: 5679 year: 2018 ident: bib153 article-title: Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing publication-title: Sci. Rep. – volume: 177 start-page: 160 year: 2016 end-page: 170 ident: bib107 article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data publication-title: Remote Sens. Environ. – volume: 18 start-page: 309 year: 2003 end-page: 332 ident: bib17 article-title: An overview of the crop model stics publication-title: Eur. J. Agron. – volume: 195 start-page: 184 year: 2017 end-page: 201 ident: bib246 article-title: An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data publication-title: Remote Sensing of Environment – volume: 41 start-page: 1773 year: 2008 end-page: 1783 ident: bib182 article-title: An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products publication-title: Adv. Space Res. – start-page: 215 year: 2017 end-page: 223 ident: bib84 article-title: Effect of NOAA Satellite Orbital Drift on AVHRR-Derived Phenological Metrics – volume: 233 start-page: 92 year: 2017 end-page: 100 ident: bib4 article-title: Large-scale estimation of xylem phenology in black spruce through remote sensing publication-title: Agric. For. Meteorol. – volume: 115 start-page: 382 year: 2011 end-page: 391 ident: bib219 article-title: Monitoring fall foliage coloration dynamics using time-series satellite data publication-title: Remote Sens. Environ. – start-page: 100 year: 2004 end-page: 104 ident: bib28 article-title: Evaluation of the MERIS Terrestrial Chlorophyll Index – volume: 111 start-page: 367 year: 2006 end-page: 375 ident: bib222 article-title: Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements publication-title: J. Geophys. Res. Biogeosci. – volume: 4 start-page: 291 year: 1997 end-page: 300 ident: bib247 article-title: Growing degree-days: one equation, two interpretations publication-title: Agricultural & Forest Meteorology – volume: 2 start-page: 2729 year: 2004 end-page: 2747 ident: bib183 article-title: Monitoring maize ( Zea mays L.) phenology with remote sensing publication-title: Agron. J. – volume: 7 start-page: 1417 year: 1986 end-page: 1434 ident: bib75 article-title: Characteristics of maximum-value composite images from temporal AVHRR data publication-title: Int. J. Remote Sens. – year: 2010 ident: bib32 article-title: Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology: Springer Netherlands – volume: 131 start-page: 215 year: 2013 end-page: 231 ident: bib163 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. – volume: 138 start-page: 90 year: 2013 end-page: 101 ident: bib195 article-title: Phenology-assisted classification of C-3 and C-4 grasses in the US Great Plains and their climate dependency with MODIS time series publication-title: Remote Sens. Environ. – volume: 5 start-page: 783 year: 1984 end-page: 797 ident: bib8 article-title: Use of Landsat-derived profile features for spring small-grains classification publication-title: Int. J. Remote Sens. – volume: 32 start-page: 8421 year: 2011 end-page: 8447 ident: bib15 article-title: Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data publication-title: Int. J. Remote Sens. – volume: 144 start-page: 85 year: 2014 end-page: 97 ident: bib192 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. – volume: 30 start-page: 211 year: 2015 end-page: 223 ident: bib141 article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN) publication-title: Ecol. Res. – year: 2010 ident: bib13 article-title: Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology: Springer Netherlands – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bib177 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – volume: 119 start-page: 55 year: 2012 end-page: 61 ident: bib194 article-title: Impact of sensor degradation on the MODIS NDVI time series publication-title: Remote Sens. Environ. – volume: 4 start-page: 310 year: 2011 end-page: 317 ident: bib178 article-title: TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – year: 2018 ident: bib244 article-title: Near-real-time herbaceous annual cover in the sagebrush ecosystem, USA publication-title: U.S. Geological Survey data release – volume: 4 start-page: 598 year: 2014 end-page: 604 ident: bib103 article-title: Net carbon uptake has increased through warming-induced changes in temperate forest phenology publication-title: Nat. Clim. Chang. – volume: 34 start-page: 188 year: 2015 end-page: 197 ident: bib146 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 20 start-page: 3713 year: 2007 end-page: 3729 ident: bib9 article-title: Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and East Siberia publication-title: J. Clim. – volume: 29 start-page: 244 year: 2014 end-page: 255 ident: bib120 article-title: Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain publication-title: Geocarto Int. – year: 2010 ident: bib125 article-title: Phenological Parameters Estimation Tool – volume: 40 start-page: 1824 year: 2002 end-page: 1832 ident: bib94 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 36 year: 1999 end-page: 47 ident: bib241 article-title: A proposal of the Temporal Window Operation (TWO) method to remove high-frequency noises in AVHRR NDVI time series data publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing – volume: 114 start-page: 2146 year: 2010 end-page: 2159 ident: bib162 article-title: A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. – volume: 109 start-page: 261 year: 2007 end-page: 273 ident: bib46 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. – volume: 117 start-page: 1472 year: 2012 ident: bib59 article-title: Land surface phenology from optical satellite measurement and CO2 eddy covariance technique publication-title: J. Geophys. Res. Biogeosci. – volume: 28 start-page: 2801 year: 2007 end-page: 2819 ident: bib69 article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness publication-title: Int. J. Remote Sens. – volume: 67 start-page: 68 year: 1999 end-page: 82 ident: bib39 article-title: Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data publication-title: Remote Sens. Environ. – volume: 11 start-page: 4305 year: 2014 end-page: 4320 ident: bib104 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences – volume: 194 start-page: 89 year: 2017 end-page: 99 ident: bib115 article-title: Real-time and short-term predictions of spring phenology in North America from VIIRS data publication-title: Remote Sens. Environ. – volume: 427 start-page: 45 year: 2018 end-page: 51 ident: bib65 article-title: Phenological variation decreased carbon uptake in European forests during 1999–2013 publication-title: For. Ecol. Manag. – volume: 45 start-page: 201 year: 1979 end-page: 207 ident: bib172 article-title: Using Landsat digital data to detect moisture stress publication-title: Photogramm. Eng. Remote Sens. – volume: 214-215 start-page: 25 year: 2015 end-page: 38 ident: bib27 article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests publication-title: Agric. For. Meteorol. – volume: 15 start-page: 613 year: 2009 end-page: 615 ident: bib203 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Change Biol. – year: 2015 ident: bib41 article-title: TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics – volume: 10 start-page: 890 year: 2018 ident: bib77 article-title: Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data publication-title: Remote Sens. – start-page: 3 year: 1974 end-page: 19 ident: bib110 article-title: Purposes of a phenology book publication-title: Phenology and Seasonality Modeling – year: 2003 ident: bib138 article-title: User's Guide – FPAR, LAI 8-day composite NASA MODIS land algorithm publication-title: Terra MODIS Land Team – volume: 62 start-page: 1 year: 2018 end-page: 5 ident: bib171 article-title: Pan European Phenological database (PEP725): a single point of access for European data publication-title: Int. J. Biometeorol. – volume: 16 start-page: 2099 year: 2016 ident: bib231 article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products publication-title: Sensors – volume: 99 start-page: 321 year: 2006 end-page: 334 ident: bib10 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. – volume: 114 start-page: 2610 year: 2010 end-page: 2623 ident: bib236 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sens. Environ. – volume: 131 start-page: 52 year: 2017 end-page: 64 ident: bib137 article-title: Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 151 start-page: 1711 year: 2011 end-page: 1722 ident: bib165 article-title: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau publication-title: Agric. For. Meteorol. – volume: 87 start-page: 42 year: 2003 end-page: 54 ident: bib216 article-title: Response of seasonal vegetation development to climatic variations in eastern central Asia publication-title: Remote Sens. Environ. – volume: 7 start-page: e1627 year: 2016 ident: bib173 article-title: Introduction to the sampling designs of the national ecological observatory network terrestrial observation system publication-title: Ecosphere – volume: 12 start-page: 309 year: 2010 end-page: 320 ident: bib132 article-title: Introducing PASAVI and PANDVI methods for sugarcane physiological date estimation, using ASTER images publication-title: J. Agric. Sci. Technol. A – volume: 156 start-page: 457 year: 2015 end-page: 472 ident: bib218 article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data publication-title: Remote Sens. Environ. – volume: 27 start-page: 3455 year: 2006 end-page: 3471 ident: bib189 article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia publication-title: Int. J. Remote Sens. – volume: 10 start-page: 1154 year: 1997 end-page: 1170 ident: bib136 article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements publication-title: J. Clim. – volume: 54 start-page: 481 year: 2011 end-page: 492 ident: bib33 article-title: Modeling of full and limited irrigation scenarios for corn in a semiarid environment publication-title: Trans. ASABE – volume: 132 start-page: 176 year: 2013 end-page: 185 ident: bib128 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data publication-title: Remote Sens. Environ. – volume: 223 start-page: 229 year: 2019 end-page: 242 ident: bib12 article-title: Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations publication-title: Remote Sens. Environ. – volume: 10 year: 2018 ident: bib96 article-title: A method for robust estimation of vegetation seasonality from Landsat and sentinel-2 time series data publication-title: Remote Sens. – volume: 83 start-page: 596 year: 1988 end-page: 610 ident: bib26 article-title: Locally weighted regression: an approach to regression analysis by local fitting publication-title: J. Am. Stat. Assoc. – volume: 13 start-page: 5085 year: 2016 end-page: 5102 ident: bib134 article-title: Reviews and syntheses: Australian vegetation phenologydigital repeat photography publication-title: Biogeosciences – volume: 104 start-page: 88 year: 2006 end-page: 95 ident: bib2 article-title: Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS publication-title: Remote Sens. Environ. – volume: 233 start-page: 171 year: 2017 end-page: 182 ident: bib209 article-title: Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites publication-title: Agric. For. Meteorol. – volume: 123 start-page: 400 year: 2012 end-page: 417 ident: bib7 article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology publication-title: Remote Sens. Environ. – volume: 386 start-page: 698 year: 1997 end-page: 702 ident: bib139 article-title: Increased plant growth in the northern high latitudes from 1981 to 1991 publication-title: Nature – volume: 13 start-page: 610 year: 2010 end-page: 633 ident: bib48 article-title: FLUXNET and modelling the global carbon cycle publication-title: Glob. Chang. Biol. – volume: 112 start-page: 1096 year: 2008 end-page: 1116 ident: bib198 article-title: Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains publication-title: Remote Sens. Environ. – volume: 30 start-page: 4643 year: 2009 end-page: 4662 ident: bib14 article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images publication-title: Int. J. Remote Sens. – volume: 10 start-page: 942 year: 2013 end-page: 946 ident: bib89 article-title: A novel compound smoother—RMMEH to reconstruct MODIS NDVI time series publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 113 start-page: 115 year: 2009 end-page: 125 ident: bib49 article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe publication-title: Remote Sens. Environ. – volume: 52 start-page: 1113 year: 2014 end-page: 1130 ident: bib61 article-title: Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 35 start-page: 2440 year: 2014 end-page: 2471 ident: bib181 article-title: A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations publication-title: Int. J. Remote Sens. – volume: 5 start-page: 982 year: 2013 end-page: 1000 ident: bib186 article-title: Length of growing period over Africa: variability and trends from 30 Years of NDVI time series publication-title: Remote Sens. – volume: 11 year: 2019 ident: bib235 article-title: Monitoring landscape dynamics in central U.S. Grasslands with harmonized Landsat-8 and sentinel-2 time series data publication-title: Remote Sensing – volume: 163 start-page: 326 year: 2015 end-page: 340 ident: bib174 article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis publication-title: Remote Sens. Environ. – year: 2018 ident: bib188 article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island publication-title: Remote Sens. Environ. – volume: 51 start-page: 2096 year: 2013 end-page: 2104 ident: bib155 article-title: Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 256–257 start-page: 207 year: 2018 end-page: 219 ident: bib149 article-title: Scaling up spring phenology derived from remote sensing images publication-title: Agric. For. Meteorol. – volume: 12 start-page: 7979 year: 2015 end-page: 8034 ident: bib205 article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites publication-title: Biogeosciences – volume: 211 start-page: 338 year: 2018 end-page: 344 ident: bib24 article-title: The mixed pixel effect in land surface phenology: a simulation study publication-title: Remote Sens. Environ. – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: bib79 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 15 start-page: 3519 year: 1994 end-page: 3545 ident: bib164 article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI publication-title: Int. J. Remote Sens. – volume: 200 start-page: 9 year: 2015 end-page: 20 ident: bib20 article-title: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data publication-title: Agric. For. Meteorol. – volume: 115 start-page: 143 year: 2011 end-page: 157 ident: bib109 article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest publication-title: Remote Sens. Environ. – volume: 121 year: 2016 ident: bib213 article-title: Characterizing land surface phenology and responses to rainfall in the Sahara Desert publication-title: J. Geophys. Res. – volume: 13 start-page: 1585 year: 1992 end-page: 1590 ident: bib184 article-title: The Best Index Slope Extraction ( BISE): a method for reducing noise in NDVI time-series publication-title: Int. J. Remote Sens. – volume: 72 start-page: 1225 year: 2006 end-page: 1234 ident: bib199 article-title: Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data publication-title: Photogram. Eng. Remote Sens. – volume: 133 start-page: 193 year: 2013 end-page: 209 ident: bib44 article-title: Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection publication-title: Remote Sens. Environ. – volume: 182 start-page: 13 year: 2016 end-page: 26 ident: bib58 article-title: Circumpolar vegetation dynamics product for global change study publication-title: Remote Sens. Environ. – volume: 104 start-page: 43 year: 2006 end-page: 49 ident: bib201 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sens. Environ. – volume: 160 start-page: 273 year: 2015 end-page: 280 ident: bib36 article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network publication-title: Remote Sens. Environ. – volume: 45 start-page: 454 year: 2008 end-page: 470 ident: bib82 article-title: Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information publication-title: Mapp. Sci. Remote Sens. – volume: 147 start-page: 79 year: 2014 end-page: 88 ident: bib207 article-title: Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS publication-title: Remote Sens. Environ. – volume: 160 start-page: 501 year: 2005 end-page: 514 ident: bib220 article-title: Neural network forecasting for seasonal and trend time series publication-title: Eur. J. Oper. Res. – volume: 60 start-page: 172 year: 2010 end-page: 175 ident: bib124 article-title: Phenology and citizen science publication-title: Bioscience – volume: 27 start-page: 3455 year: 2006 end-page: 3471 ident: bib190 article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia publication-title: Int. J. Remote Sens. – volume: 18 start-page: 656 year: 2012 end-page: 674 ident: bib43 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forests publication-title: Glob. Chang. Biol. – volume: 30 start-page: 2061 year: 2009 end-page: 2074 ident: bib223 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. – volume: 216 start-page: 177 year: 2016 end-page: 187 ident: bib208 article-title: Land surface phenology of China's temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity publication-title: Agric. For. Meteorol. – year: 1999 ident: bib80 article-title: MODIS Vegetation Index (MOD13). Algorithm Theoretical Basis Document – volume: 25 start-page: 2287 year: 2004 end-page: 2300 ident: bib170 article-title: Analysis of phenological change patterns using 1982–2000 advanced very high resolution radiometer (AVHRR) data publication-title: Int. J. Remote Sens. – volume: 249 start-page: 335 year: 2018 end-page: 347 ident: bib147 article-title: Networked web-cameras monitor congruent seasonal development of birches with phenological field observations publication-title: Agric. For. Meteorol. – volume: 89 start-page: 497 year: 2004 end-page: 509 ident: bib30 article-title: Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan publication-title: Remote Sens. Environ. – volume: 148 start-page: 82 year: 2018 end-page: 94 ident: bib38 article-title: QPhenoMetrics: an open source software application to assess vegetation phenology metrics publication-title: Comput. Electron. Agric. – volume: 115 start-page: 615 year: 2011 end-page: 627 ident: bib62 article-title: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series publication-title: Remote Sens. Environ. – volume: 112 start-page: 3833 year: 2008 end-page: 3845 ident: bib87 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. – volume: 190 start-page: 178 year: 2017 end-page: 187 ident: bib83 article-title: Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests publication-title: Remote Sens. Environ. – volume: 10 start-page: 1325 year: 2011 end-page: 1337 ident: bib248 article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO₂ uptake publication-title: Agricultural & Forest Meteorology – volume: 9 start-page: 254 year: 2017 ident: bib211 article-title: Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS) publication-title: Remote Sens. – volume: 232 start-page: 111307 year: 2019 ident: bib175 article-title: Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992--2012 publication-title: Remote Sens. Environ. – volume: 2 start-page: 323 year: 2007 end-page: 334 ident: bib249 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia – volume: 186 start-page: 452 year: 2016 end-page: 464 ident: bib129 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. – volume: 10 year: 2018 ident: bib242 article-title: Spatiotemporal Analysis of Landsat-8 and Sentinel-2Data to Support Monitoring of Dryland Ecosystems publication-title: Remote sensing – volume: 248 start-page: 397 year: 2018 end-page: 407 ident: bib106 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. – start-page: 1338 year: 2001 end-page: 1340 ident: bib74 article-title: Climatic Change Impact on Growing Season in Fennoscandia Studied by a Time Series of NOAA AVHRR NDVI Data – volume: 10 start-page: 4055 year: 2013 end-page: 4071 ident: bib99 article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations: application to MODIS LAI products publication-title: Biogeosciences – volume: 152 start-page: 512 year: 2014 end-page: 525 ident: bib88 article-title: A physically based vegetation index for improved monitoring of plant phenology publication-title: Remote Sens. Environ. – volume: 113 start-page: 248 year: 2009 end-page: 258 ident: bib72 article-title: Noise reduction of NDVI time series: an empirical comparison of selected techniques publication-title: Remote Sens. Environ. – volume: 6 start-page: 11518 year: 2014 end-page: 11532 ident: bib85 article-title: Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data publication-title: Remote Sens. – volume: 188 start-page: 9 year: 2017 end-page: 25 ident: bib54 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. – year: 1978 ident: bib151 article-title: Distinguishing Vegetation from Soil Background Information – year: 2012 ident: bib42 article-title: TIMESAT 3.2 with Parallel Processing-Software Manual – volume: 11 start-page: 41 year: 1947 end-page: 76 ident: bib200 article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years publication-title: Ann. Botany – volume: 6 start-page: 1367 year: 2014 end-page: 1389 ident: bib239 article-title: A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa publication-title: Remote Sensing – volume: 198 start-page: 203 year: 2017 end-page: 212 ident: bib90 article-title: Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index publication-title: Remote Sens. Environ. – volume: 12 start-page: 7979 issue: 20 year: 2015 ident: 10.1016/j.rse.2019.111511_bib205 article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites publication-title: Biogeosciences doi: 10.5194/bg-12-5995-2015 – volume: 36 start-page: 300 year: 2015 ident: 10.1016/j.rse.2019.111511_bib67 article-title: Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.994719 – volume: 144 start-page: 85 year: 2014 ident: 10.1016/j.rse.2019.111511_bib192 article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.007 – volume: 177 start-page: 160 year: 2016 ident: 10.1016/j.rse.2019.111511_bib107 article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.020 – volume: 211 start-page: 338 year: 2018 ident: 10.1016/j.rse.2019.111511_bib24 article-title: The mixed pixel effect in land surface phenology: a simulation study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.030 – volume: 148 start-page: 97 year: 2014 ident: 10.1016/j.rse.2019.111511_bib102 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.017 – volume: 156 start-page: 457 year: 2015 ident: 10.1016/j.rse.2019.111511_bib218 article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.012 – volume: 117 start-page: 1472 year: 2012 ident: 10.1016/j.rse.2019.111511_bib59 article-title: Land surface phenology from optical satellite measurement and CO2 eddy covariance technique publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2012JG002070 – volume: 237–238 start-page: 311 year: 2017 ident: 10.1016/j.rse.2019.111511_bib116 article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.02.026 – volume: 16 start-page: 3014 year: 2010 ident: 10.1016/j.rse.2019.111511_bib60 article-title: Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02164.x – volume: 30 start-page: 2061 year: 2009 ident: 10.1016/j.rse.2019.111511_bib223 article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802549237 – volume: 9 start-page: 902 year: 2017 ident: 10.1016/j.rse.2019.111511_bib86 article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring publication-title: Remote Sens. doi: 10.3390/rs9090902 – volume: 37 start-page: 835 year: 2006 ident: 10.1016/j.rse.2019.111511_bib121 article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China publication-title: Adv. Space Res. doi: 10.1016/j.asr.2005.08.037 – volume: 99 start-page: 321 year: 2006 ident: 10.1016/j.rse.2019.111511_bib10 article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.021 – volume: 109 start-page: 261 year: 2007 ident: 10.1016/j.rse.2019.111511_bib46 article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.01.004 – volume: 91 start-page: 332 year: 2004 ident: 10.1016/j.rse.2019.111511_bib22 article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.03.014 – year: 2010 ident: 10.1016/j.rse.2019.111511_bib13 – volume: 18 start-page: 309 issue: 3-4 year: 2003 ident: 10.1016/j.rse.2019.111511_bib17 article-title: An overview of the crop model stics publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00110-7 – volume: 151 start-page: 1741 year: 2011 ident: 10.1016/j.rse.2019.111511_bib55 article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.07.008 – volume: 219 start-page: 145 year: 2018 ident: 10.1016/j.rse.2019.111511_bib25 article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.002 – volume: 54 start-page: 4867 year: 2016 ident: 10.1016/j.rse.2019.111511_bib214 article-title: A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo basin publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2552462 – volume: 133 start-page: 193 year: 2013 ident: 10.1016/j.rse.2019.111511_bib44 article-title: Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.02.007 – volume: 248 start-page: 397 year: 2018 ident: 10.1016/j.rse.2019.111511_bib106 article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.015 – start-page: 277 year: 2008 ident: 10.1016/j.rse.2019.111511_bib126 – volume: 160 start-page: 501 year: 2005 ident: 10.1016/j.rse.2019.111511_bib220 article-title: Neural network forecasting for seasonal and trend time series publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2003.08.037 – volume: 8 start-page: 5679 year: 2018 ident: 10.1016/j.rse.2019.111511_bib153 article-title: Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing publication-title: Sci. Rep. doi: 10.1038/s41598-018-23804-6 – volume: 205 start-page: 71 year: 2018 ident: 10.1016/j.rse.2019.111511_bib63 article-title: Remote sensing of mangrove forest phenology and its environmental drivers publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.009 – volume: 9 start-page: 254 year: 2017 ident: 10.1016/j.rse.2019.111511_bib211 article-title: Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS) publication-title: Remote Sens. doi: 10.3390/rs9030254 – start-page: 215 year: 2017 ident: 10.1016/j.rse.2019.111511_bib84 – volume: 190 start-page: 178 year: 2017 ident: 10.1016/j.rse.2019.111511_bib83 article-title: Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.021 – volume: 7 start-page: 1142 year: 2014 ident: 10.1016/j.rse.2019.111511_bib212 article-title: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2294956 – volume: 35 start-page: 2472 year: 2014 ident: 10.1016/j.rse.2019.111511_bib131 article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.883090 – volume: 41 start-page: 2568 year: 2003 ident: 10.1016/j.rse.2019.111511_bib64 article-title: Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.817274 – volume: 113 start-page: 248 year: 2009 ident: 10.1016/j.rse.2019.111511_bib72 article-title: Noise reduction of NDVI time series: an empirical comparison of selected techniques publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.003 – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.rse.2019.111511_bib177 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 29 start-page: 244 year: 2014 ident: 10.1016/j.rse.2019.111511_bib120 article-title: Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain publication-title: Geocarto Int. doi: 10.1080/10106049.2012.760004 – volume: 51 start-page: 2096 year: 2013 ident: 10.1016/j.rse.2019.111511_bib155 article-title: Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2012.2223475 – volume: 217 start-page: 244 year: 2018 ident: 10.1016/j.rse.2019.111511_bib21 article-title: A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.08.022 – volume: 160 start-page: 156 year: 2015 ident: 10.1016/j.rse.2019.111511_bib113 article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.011 – volume: 11 start-page: 779 year: 2005 ident: 10.1016/j.rse.2019.111511_bib31 article-title: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2005.00949.x – volume: 200 start-page: 9 year: 2015 ident: 10.1016/j.rse.2019.111511_bib20 article-title: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.09.009 – volume: 35 start-page: 2440 year: 2014 ident: 10.1016/j.rse.2019.111511_bib181 article-title: A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.883105 – volume: 48 start-page: 220 year: 1994 ident: 10.1016/j.rse.2019.111511_bib45 article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)90143-0 – volume: 97 start-page: 26 year: 2005 ident: 10.1016/j.rse.2019.111511_bib34 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.011 – volume: 11 start-page: 2269 year: 1990 ident: 10.1016/j.rse.2019.111511_bib117 article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery publication-title: Remote Sens. doi: 10.1080/01431169008955174 – volume: 186 start-page: 452 year: 2016 ident: 10.1016/j.rse.2019.111511_bib129 article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.09.014 – volume: 34 start-page: 117 year: 2016 ident: 10.1016/j.rse.2019.111511_bib1 article-title: A systematic review of vegetation phenology in Africa publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2016.05.004 – start-page: 1 year: 2017 ident: 10.1016/j.rse.2019.111511_bib122 article-title: Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan publication-title: Water Resour. Manag. – volume: 115 start-page: 143 year: 2011 ident: 10.1016/j.rse.2019.111511_bib109 article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.08.013 – volume: 194 start-page: 89 year: 2017 ident: 10.1016/j.rse.2019.111511_bib115 article-title: Real-time and short-term predictions of spring phenology in North America from VIIRS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.009 – volume: 104 start-page: 88 year: 2006 ident: 10.1016/j.rse.2019.111511_bib2 article-title: Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.05.003 – volume: 18 start-page: 235 issue: 3-4 year: 2003 ident: 10.1016/j.rse.2019.111511_bib91 article-title: The dssat cropping system model publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(02)00107-7 – volume: 119 start-page: 55 year: 2012 ident: 10.1016/j.rse.2019.111511_bib194 article-title: Impact of sensor degradation on the MODIS NDVI time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.12.001 – start-page: 7 year: 1991 ident: 10.1016/j.rse.2019.111511_bib73 – volume: 4 start-page: 598 year: 2014 ident: 10.1016/j.rse.2019.111511_bib103 article-title: Net carbon uptake has increased through warming-induced changes in temperate forest phenology publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2253 – volume: 50 start-page: 1085 year: 2012 ident: 10.1016/j.rse.2019.111511_bib237 article-title: A changing-weight filter method for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2166965 – volume: 223 start-page: 229 year: 2019 ident: 10.1016/j.rse.2019.111511_bib12 article-title: Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.01.010 – volume: 16 start-page: 2099 year: 2016 ident: 10.1016/j.rse.2019.111511_bib231 article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products publication-title: Sensors doi: 10.3390/s16122099 – volume: 22 start-page: 994 issue: 8 year: 2013 ident: 10.1016/j.rse.2019.111511_bib238 article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn publication-title: Global Ecology and Biogeography doi: 10.1111/geb.12044 – volume: 111 start-page: 2943 year: 2006 ident: 10.1016/j.rse.2019.111511_bib57 article-title: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground‐based estimations publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2005JD006511 – volume: 5 start-page: 703 year: 1994 ident: 10.1016/j.rse.2019.111511_bib150 article-title: Measuring phenological variability from satellite imagery publication-title: J. Veg. Sci. doi: 10.2307/3235884 – volume: 25 start-page: 295 year: 1988 ident: 10.1016/j.rse.2019.111511_bib79 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 62 start-page: 1 year: 2018 ident: 10.1016/j.rse.2019.111511_bib171 article-title: Pan European Phenological database (PEP725): a single point of access for European data publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-018-1512-8 – volume: 10 start-page: 4055 issue: 6 year: 2013 ident: 10.1016/j.rse.2019.111511_bib99 article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations: application to MODIS LAI products publication-title: Biogeosciences doi: 10.5194/bg-10-4055-2013 – volume: 138 start-page: 176 year: 2018 ident: 10.1016/j.rse.2019.111511_bib160 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.011 – volume: 163 start-page: 217 year: 2015 ident: 10.1016/j.rse.2019.111511_bib234 article-title: Reconstruction of global MODIS NDVI time series: performance of harmonic ANalysis of time series (HANTS) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.018 – volume: 181 start-page: 237 year: 2016 ident: 10.1016/j.rse.2019.111511_bib217 article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.039 – volume: 52 start-page: 1113 year: 2014 ident: 10.1016/j.rse.2019.111511_bib61 article-title: Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2247611 – volume: 112 start-page: 576 year: 2008 ident: 10.1016/j.rse.2019.111511_bib50 article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.05.017 – volume: 117 start-page: 307 year: 2012 ident: 10.1016/j.rse.2019.111511_bib81 article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.006 – volume: 83 start-page: 596 year: 1988 ident: 10.1016/j.rse.2019.111511_bib26 article-title: Locally weighted regression: an approach to regression analysis by local fitting publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478639 – volume: 7 start-page: 1417 year: 1986 ident: 10.1016/j.rse.2019.111511_bib75 article-title: Characteristics of maximum-value composite images from temporal AVHRR data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168608948945 – volume: 11 start-page: 217 year: 1997 ident: 10.1016/j.rse.2019.111511_bib202 article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability publication-title: Glob. Biogeochem. Cycles doi: 10.1029/97GB00330 – volume: 45 start-page: 201 year: 1979 ident: 10.1016/j.rse.2019.111511_bib172 article-title: Using Landsat digital data to detect moisture stress publication-title: Photogramm. Eng. Remote Sens. – volume: 115 start-page: 2460 year: 2011 ident: 10.1016/j.rse.2019.111511_bib180 article-title: A multisensor fusion approach to improve LAI time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.05.006 – volume: 27 start-page: 3455 year: 2006 ident: 10.1016/j.rse.2019.111511_bib190 article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600639743 – volume: 152 start-page: 512 year: 2014 ident: 10.1016/j.rse.2019.111511_bib88 article-title: A physically based vegetation index for improved monitoring of plant phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.07.010 – start-page: 517 year: 2011 ident: 10.1016/j.rse.2019.111511_bib152 article-title: PhenoCam: a continental-scale observatory for monitoring the phenology of terrestrial vegetation publication-title: Am. Geophys. Union, Fall Meet. – volume: 45 start-page: 3264 year: 2007 ident: 10.1016/j.rse.2019.111511_bib70 article-title: Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.903044 – volume: 216 year: 2018 ident: 10.1016/j.rse.2019.111511_bib229 article-title: Generation and evaluation of the VIIRS land surface phenology product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.047 – volume: 160 start-page: 273 year: 2015 ident: 10.1016/j.rse.2019.111511_bib36 article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.012 – volume: 132 start-page: 185 year: 2017 ident: 10.1016/j.rse.2019.111511_bib148 article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2017.09.002 – volume: 38 start-page: 36 issue: 5 year: 1999 ident: 10.1016/j.rse.2019.111511_bib241 article-title: A proposal of the Temporal Window Operation (TWO) method to remove high-frequency noises in AVHRR NDVI time series data publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing doi: 10.4287/jsprs.38.5_36 – volume: 1 start-page: 115 issue: 40 year: 2002 ident: 10.1016/j.rse.2019.111511_bib243 article-title: Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994 publication-title: IEEE Transactions on Geoscience & Remote Sensing doi: 10.1109/36.981354 – volume: 45 start-page: 16 year: 2008 ident: 10.1016/j.rse.2019.111511_bib18 article-title: The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation publication-title: GIScience Remote Sens. doi: 10.2747/1548-1603.45.1.16 – start-page: 135 year: 2011 ident: 10.1016/j.rse.2019.111511_bib230 – volume: 32 start-page: 8421 year: 2011 ident: 10.1016/j.rse.2019.111511_bib15 article-title: Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.542194 – volume: 386 start-page: 698 year: 1997 ident: 10.1016/j.rse.2019.111511_bib139 article-title: Increased plant growth in the northern high latitudes from 1981 to 1991 publication-title: Nature doi: 10.1038/386698a0 – year: 2003 ident: 10.1016/j.rse.2019.111511_bib138 article-title: User's Guide – FPAR, LAI 8-day composite NASA MODIS land algorithm – volume: 15 start-page: 3519 year: 1994 ident: 10.1016/j.rse.2019.111511_bib164 article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954343 – volume: 46 start-page: 45 year: 2018 ident: 10.1016/j.rse.2019.111511_bib5 article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery publication-title: Ecol. Inf. doi: 10.1016/j.ecoinf.2018.05.006 – volume: 4 start-page: 291 issue: 87 year: 1997 ident: 10.1016/j.rse.2019.111511_bib247 article-title: Growing degree-days: one equation, two interpretations publication-title: Agricultural & Forest Meteorology doi: 10.1016/S0168-1923(97)00027-0 – volume: 148 start-page: 82 year: 2018 ident: 10.1016/j.rse.2019.111511_bib38 article-title: QPhenoMetrics: an open source software application to assess vegetation phenology metrics publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.03.007 – year: 2017 ident: 10.1016/j.rse.2019.111511_bib245 article-title: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring publication-title: GSCE Faculty Publications – volume: 10 start-page: 1154 year: 1997 ident: 10.1016/j.rse.2019.111511_bib136 article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements publication-title: J. Clim. doi: 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2 – volume: 86 start-page: 232 year: 2003 ident: 10.1016/j.rse.2019.111511_bib100 article-title: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00103-2 – volume: 100 start-page: 67 year: 2006 ident: 10.1016/j.rse.2019.111511_bib179 article-title: Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.002 – volume: 75 start-page: 305 year: 2001 ident: 10.1016/j.rse.2019.111511_bib133 article-title: Land-surface phenologies from AVHRR using the discrete fourier transform publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00175-9 – volume: 5 start-page: 783 year: 1984 ident: 10.1016/j.rse.2019.111511_bib8 article-title: Use of Landsat-derived profile features for spring small-grains classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431168408948860 – start-page: 100 year: 2004 ident: 10.1016/j.rse.2019.111511_bib28 – year: 2018 ident: 10.1016/j.rse.2019.111511_bib244 article-title: Near-real-time herbaceous annual cover in the sagebrush ecosystem, USA publication-title: U.S. Geological Survey data release – year: 1999 ident: 10.1016/j.rse.2019.111511_bib80 – volume: 256-257 start-page: 137 year: 2018 ident: 10.1016/j.rse.2019.111511_bib228 article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.03.003 – volume: 41 start-page: 1773 year: 2008 ident: 10.1016/j.rse.2019.111511_bib182 article-title: An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products publication-title: Adv. Space Res. doi: 10.1016/j.asr.2007.05.066 – volume: 104 start-page: 43 year: 2006 ident: 10.1016/j.rse.2019.111511_bib201 article-title: Real-time monitoring and short-term forecasting of land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.014 – year: 2010 ident: 10.1016/j.rse.2019.111511_bib125 – volume: 4 start-page: 361 year: 2011 ident: 10.1016/j.rse.2019.111511_bib169 article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2010.2075916 – volume: 249 start-page: 335 year: 2018 ident: 10.1016/j.rse.2019.111511_bib147 article-title: Networked web-cameras monitor congruent seasonal development of birches with phenological field observations publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.10.008 – volume: 6 start-page: 11518 year: 2014 ident: 10.1016/j.rse.2019.111511_bib85 article-title: Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data publication-title: Remote Sens. doi: 10.3390/rs61111518 – volume: 36 start-page: 206 year: 1998 ident: 10.1016/j.rse.2019.111511_bib118 article-title: Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.655330 – volume: 9 start-page: 1271 year: 2017 ident: 10.1016/j.rse.2019.111511_bib19 article-title: Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data publication-title: Remote Sens. doi: 10.3390/rs9121271 – volume: 10 issue: 5 year: 2018 ident: 10.1016/j.rse.2019.111511_bib242 article-title: Spatiotemporal Analysis of Landsat-8 and Sentinel-2Data to Support Monitoring of Dryland Ecosystems publication-title: Remote sensing doi: 10.3390/rs10050791 – volume: 5 start-page: 982 year: 2013 ident: 10.1016/j.rse.2019.111511_bib186 article-title: Length of growing period over Africa: variability and trends from 30 Years of NDVI time series publication-title: Remote Sens. doi: 10.3390/rs5020982 – volume: 188 start-page: 9 year: 2017 ident: 10.1016/j.rse.2019.111511_bib54 article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.11.004 – volume: 163 start-page: 326 year: 2015 ident: 10.1016/j.rse.2019.111511_bib174 article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.03.031 – volume: 113 start-page: 1823 year: 2009 ident: 10.1016/j.rse.2019.111511_bib123 article-title: Vegetation dynamics from NDVI time series analysis using the wavelet transform publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.04.016 – volume: 87 start-page: 42 year: 2003 ident: 10.1016/j.rse.2019.111511_bib216 article-title: Response of seasonal vegetation development to climatic variations in eastern central Asia publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00144-5 – volume: 23 start-page: 2818 year: 2017 ident: 10.1016/j.rse.2019.111511_bib108 article-title: Response of vegetation phenology to urbanization in the conterminous United States publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13562 – volume: 11 start-page: 4305 year: 2014 ident: 10.1016/j.rse.2019.111511_bib104 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences doi: 10.5194/bg-11-4305-2014 – volume: 44 start-page: 2230 year: 2006 ident: 10.1016/j.rse.2019.111511_bib23 article-title: Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.872089 – volume: 22 start-page: 2649 year: 2001 ident: 10.1016/j.rse.2019.111511_bib119 article-title: Filtering pathfinder AVHRR land NDVI data for Australia publication-title: Int. J. Remote Sens. doi: 10.1080/01431160116874 – volume: 113 start-page: 1497 year: 2009 ident: 10.1016/j.rse.2019.111511_bib143 article-title: Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.017 – volume: 114 start-page: 2146 year: 2010 ident: 10.1016/j.rse.2019.111511_bib162 article-title: A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.019 – volume: 7 start-page: e1627 year: 2016 ident: 10.1016/j.rse.2019.111511_bib173 article-title: Introduction to the sampling designs of the national ecological observatory network terrestrial observation system publication-title: Ecosphere doi: 10.1002/ecs2.1627 – volume: 112 start-page: 1096 year: 2008 ident: 10.1016/j.rse.2019.111511_bib198 article-title: Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.019 – volume: 54 start-page: 481 year: 2011 ident: 10.1016/j.rse.2019.111511_bib33 article-title: Modeling of full and limited irrigation scenarios for corn in a semiarid environment publication-title: Trans. ASABE doi: 10.13031/2013.36451 – volume: 454 start-page: 903 year: 1998 ident: 10.1016/j.rse.2019.111511_bib78 article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis publication-title: Proc. Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 30 start-page: 211 year: 2015 ident: 10.1016/j.rse.2019.111511_bib141 article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN) publication-title: Ecol. Res. doi: 10.1007/s11284-014-1239-x – volume: 28 start-page: 2801 year: 2007 ident: 10.1016/j.rse.2019.111511_bib69 article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600967128 – volume: 13 start-page: 5085 year: 2016 ident: 10.1016/j.rse.2019.111511_bib134 article-title: Reviews and syntheses: Australian vegetation phenologydigital repeat photography publication-title: Biogeosciences doi: 10.5194/bg-13-5085-2016 – volume: vol. 1 start-page: 309 year: 1973 ident: 10.1016/j.rse.2019.111511_bib157 – volume: 190 start-page: 318 year: 2017 ident: 10.1016/j.rse.2019.111511_bib226 article-title: Exploration of scaling effects on coarse resolution land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.01.001 – year: 2012 ident: 10.1016/j.rse.2019.111511_bib42 – volume: 75 start-page: 3631 year: 2003 ident: 10.1016/j.rse.2019.111511_bib40 article-title: A perfect smoother publication-title: Anal. Chem. doi: 10.1021/ac034173t – volume: 114 start-page: 1805 year: 2010 ident: 10.1016/j.rse.2019.111511_bib51 article-title: Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.04.005 – volume: 112 start-page: 3833 year: 2008 ident: 10.1016/j.rse.2019.111511_bib87 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.006 – volume: 35 start-page: 3316 year: 2014 ident: 10.1016/j.rse.2019.111511_bib76 article-title: Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.903437 – volume: 10 start-page: 942 year: 2013 ident: 10.1016/j.rse.2019.111511_bib89 article-title: A novel compound smoother—RMMEH to reconstruct MODIS NDVI time series publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2253760 – volume: 25 start-page: 2287 year: 2004 ident: 10.1016/j.rse.2019.111511_bib170 article-title: Analysis of phenological change patterns using 1982–2000 advanced very high resolution radiometer (AVHRR) data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160310001618455 – volume: 114 start-page: 2610 year: 2010 ident: 10.1016/j.rse.2019.111511_bib236 article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.032 – volume: 427 start-page: 45 year: 2018 ident: 10.1016/j.rse.2019.111511_bib65 article-title: Phenological variation decreased carbon uptake in European forests during 1999–2013 publication-title: For. Ecol. Manag. doi: 10.1016/j.foreco.2018.05.062 – volume: 219 start-page: 196 year: 2018 ident: 10.1016/j.rse.2019.111511_bib127 article-title: Estimating canola phenology using synthetic aperture radar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.10.012 – year: 2018 ident: 10.1016/j.rse.2019.111511_bib145 article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2018.1423725 – volume: 3 start-page: 47 year: 2015 ident: 10.1016/j.rse.2019.111511_bib53 article-title: Fusing Landsat and MODIS data for vegetation monitoring publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2015.2434351 – year: 2013 ident: 10.1016/j.rse.2019.111511_bib68 – volume: 100 start-page: 265 year: 2006 ident: 10.1016/j.rse.2019.111511_bib47 article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.10.022 – volume: 10 year: 2018 ident: 10.1016/j.rse.2019.111511_bib3 article-title: An exploration of terrain effects on land surface phenology across the Qinghai–Tibet plateau using Landsat ETM+ and OLI data publication-title: Remote Sens. doi: 10.3390/rs10071069 – volume: 34 start-page: 188 year: 2015 ident: 10.1016/j.rse.2019.111511_bib146 article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 195 start-page: 184 year: 2017 ident: 10.1016/j.rse.2019.111511_bib246 article-title: An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2017.04.016 – volume: 152 start-page: 159 year: 2012 ident: 10.1016/j.rse.2019.111511_bib166 article-title: Digital repeat photography for phenological research in forest ecosystems publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.09.009 – volume: 123 start-page: 400 year: 2012 ident: 10.1016/j.rse.2019.111511_bib7 article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.001 – volume: 121 year: 2016 ident: 10.1016/j.rse.2019.111511_bib213 article-title: Characterizing land surface phenology and responses to rainfall in the Sahara Desert publication-title: J. Geophys. Res. – volume: 113 start-page: 115 year: 2009 ident: 10.1016/j.rse.2019.111511_bib49 article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.08.015 – volume: 13 start-page: 1585 year: 1992 ident: 10.1016/j.rse.2019.111511_bib184 article-title: The Best Index Slope Extraction ( BISE): a method for reducing noise in NDVI time-series publication-title: Int. J. Remote Sens. doi: 10.1080/01431169208904212 – volume: 132 start-page: 176 year: 2013 ident: 10.1016/j.rse.2019.111511_bib128 article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.01.011 – volume: 115 start-page: 1102 year: 2011 ident: 10.1016/j.rse.2019.111511_bib92 article-title: Satellite passive microwave remote sensing for monitoring global land surface phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.015 – volume: 11 start-page: 4305 year: 2014 ident: 10.1016/j.rse.2019.111511_bib105 article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery publication-title: Biogeosciences doi: 10.5194/bg-11-4305-2014 – volume: 176 start-page: 152 year: 2016 ident: 10.1016/j.rse.2019.111511_bib114 article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.01.021 – volume: 10 start-page: 1325 issue: 151 year: 2011 ident: 10.1016/j.rse.2019.111511_bib248 article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO₂ uptake publication-title: Agricultural & Forest Meteorology doi: 10.1016/j.agrformet.2011.05.012 – start-page: 4926 year: 2012 ident: 10.1016/j.rse.2019.111511_bib154 – year: 2010 ident: 10.1016/j.rse.2019.111511_bib32 – volume: 108 start-page: 385 year: 2007 ident: 10.1016/j.rse.2019.111511_bib71 article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.025 – volume: 114 start-page: 618 year: 2010 ident: 10.1016/j.rse.2019.111511_bib97 article-title: Comparison of cloud-reconstruction methods for time series of composite NDVI data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.11.001 – volume: 198-199 start-page: 116 year: 2014 ident: 10.1016/j.rse.2019.111511_bib98 article-title: Using digital camera images to analyse snowmelt and phenology of a subalpine grassland publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.08.007 – volume: 105 start-page: 37 year: 2011 ident: 10.1016/j.rse.2019.111511_bib66 article-title: Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-010-0374-8 – start-page: 495 year: 2013 ident: 10.1016/j.rse.2019.111511_bib130 – volume: 225 start-page: 127 year: 2019 ident: 10.1016/j.rse.2019.111511_bib210 article-title: Current status of Landsat program, science, and applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.015 – volume: 28 start-page: 4311 year: 2007 ident: 10.1016/j.rse.2019.111511_bib11 article-title: A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701241936 – volume: 11 start-page: 174 issue: 126 year: 2012 ident: 10.1016/j.rse.2019.111511_bib240 article-title: Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2012.08.009 – volume: 20 start-page: 3713 year: 2007 ident: 10.1016/j.rse.2019.111511_bib9 article-title: Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and East Siberia publication-title: J. Clim. doi: 10.1175/JCLI4226 – volume: 30 start-page: 4643 year: 2009 ident: 10.1016/j.rse.2019.111511_bib14 article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images publication-title: Int. J. Remote Sens. doi: 10.1080/01431160802632249 – volume: 229 start-page: 179 year: 2019 ident: 10.1016/j.rse.2019.111511_bib37 article-title: Complex network-based time series remote sensing model in monitoring the fall foliage transition date for peak coloration publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.003 – volume: 4 start-page: 310 year: 2011 ident: 10.1016/j.rse.2019.111511_bib178 article-title: TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2010.2051942 – volume: 11 year: 2019 ident: 10.1016/j.rse.2019.111511_bib235 article-title: Monitoring landscape dynamics in central U.S. Grasslands with harmonized Landsat-8 and sentinel-2 time series data publication-title: Remote Sensing – start-page: 3 year: 1974 ident: 10.1016/j.rse.2019.111511_bib110 article-title: Purposes of a phenology book – volume: 89 start-page: 497 year: 2004 ident: 10.1016/j.rse.2019.111511_bib30 article-title: Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.006 – volume: 72 start-page: 1225 year: 2006 ident: 10.1016/j.rse.2019.111511_bib199 article-title: Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data publication-title: Photogram. Eng. Remote Sens. doi: 10.14358/PERS.72.11.1225 – volume: 12 start-page: 309 year: 2010 ident: 10.1016/j.rse.2019.111511_bib132 article-title: Introducing PASAVI and PANDVI methods for sugarcane physiological date estimation, using ASTER images publication-title: J. Agric. Sci. Technol. A – volume: 84 start-page: 471 year: 2003 ident: 10.1016/j.rse.2019.111511_bib221 article-title: Monitoring vegetation phenology using MODIS time-series data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00135-9 – volume: 214-215 start-page: 25 year: 2015 ident: 10.1016/j.rse.2019.111511_bib27 article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.07.005 – volume: 2 start-page: 323 issue: 152 year: 2007 ident: 10.1016/j.rse.2019.111511_bib249 article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest publication-title: Oecologia doi: 10.1007/s00442-006-0657-z – volume: 30 start-page: 833 year: 2004 ident: 10.1016/j.rse.2019.111511_bib95 article-title: TIMESAT—a program for analyzing time-series of satellite sensor data ☆ publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.05.006 – volume: 16 start-page: 2099 year: 2016 ident: 10.1016/j.rse.2019.111511_bib215 article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products publication-title: Sensors doi: 10.3390/s16122099 – volume: 67 start-page: 68 year: 1999 ident: 10.1016/j.rse.2019.111511_bib39 article-title: Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00067-4 – volume: 40 start-page: 1824 year: 2002 ident: 10.1016/j.rse.2019.111511_bib94 article-title: Seasonality extraction by function fitting to time-series of satellite sensor data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2002.802519 – volume: 11 start-page: 39 year: 2005 ident: 10.1016/j.rse.2019.111511_bib6 article-title: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2004.00890.x – volume: 138 start-page: 176 year: 2018 ident: 10.1016/j.rse.2019.111511_bib159 article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2018.02.011 – volume: 191 start-page: 145 year: 2017 ident: 10.1016/j.rse.2019.111511_bib227 article-title: Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.018 – volume: 11 year: 2019 ident: 10.1016/j.rse.2019.111511_bib250 article-title: How does scale effect influence spring vegetation phenology estimated from satellited-derived vegetation indexes? publication-title: Remote sensing – volume: 131 start-page: 215 year: 2013 ident: 10.1016/j.rse.2019.111511_bib163 article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.017 – volume: 15 start-page: 613 year: 2009 ident: 10.1016/j.rse.2019.111511_bib203 article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2009.01910.x – volume: 158-159 start-page: 21 year: 2012 ident: 10.1016/j.rse.2019.111511_bib224 article-title: Prototype for monitoring and forecasting fall foliage coloration in real time from satellite data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.01.013 – volume: 115 start-page: 615 year: 2011 ident: 10.1016/j.rse.2019.111511_bib62 article-title: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.10.006 – volume: 3 start-page: 203 year: 2011 ident: 10.1016/j.rse.2019.111511_bib101 article-title: Environmental drivers of NDVI-based vegetation phenology in central Asia publication-title: Remote Sens. doi: 10.3390/rs3020203 – volume: 161 start-page: 165 year: 2004 ident: 10.1016/j.rse.2019.111511_bib56 article-title: Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation publication-title: J. Plant Physiol. doi: 10.1078/0176-1617-01176 – year: 2003 ident: 10.1016/j.rse.2019.111511_bib185 – volume: 59 start-page: 19 year: 2017 ident: 10.1016/j.rse.2019.111511_bib187 article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 198 start-page: 203 year: 2017 ident: 10.1016/j.rse.2019.111511_bib90 article-title: Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.015 – volume: 138 start-page: 90 year: 2013 ident: 10.1016/j.rse.2019.111511_bib195 article-title: Phenology-assisted classification of C-3 and C-4 grasses in the US Great Plains and their climate dependency with MODIS time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.025 – volume: 114 start-page: 1388 year: 2010 ident: 10.1016/j.rse.2019.111511_bib29 article-title: The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.01.021 – year: 2015 ident: 10.1016/j.rse.2019.111511_bib41 – volume: 2 start-page: 2369 year: 2010 ident: 10.1016/j.rse.2019.111511_bib135 article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology publication-title: Remote Sens. doi: 10.3390/rs2102369 – volume: 11 start-page: 41 year: 1947 ident: 10.1016/j.rse.2019.111511_bib200 article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years publication-title: Ann. Botany doi: 10.1093/oxfordjournals.aob.a083148 – volume: 9 start-page: 317 year: 2017 ident: 10.1016/j.rse.2019.111511_bib168 article-title: Remote sensing daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards publication-title: Remote Sens. doi: 10.3390/rs9040317 – year: 1978 ident: 10.1016/j.rse.2019.111511_bib151 – volume: 22 year: 2015 ident: 10.1016/j.rse.2019.111511_bib193 article-title: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests publication-title: Glob. Chang. Biol. – volume: 232 start-page: 111307 year: 2019 ident: 10.1016/j.rse.2019.111511_bib175 article-title: Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992--2012 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111307 – volume: 2 start-page: 2729 year: 2004 ident: 10.1016/j.rse.2019.111511_bib183 article-title: Monitoring maize ( Zea mays L.) phenology with remote sensing publication-title: Agron. J. – volume: 233 start-page: 92 year: 2017 ident: 10.1016/j.rse.2019.111511_bib4 article-title: Large-scale estimation of xylem phenology in black spruce through remote sensing publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.11.011 – volume: 17 start-page: 1982 year: 2017 ident: 10.1016/j.rse.2019.111511_bib197 article-title: Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index publication-title: Sensors doi: 10.3390/s17091982 – volume: 148 start-page: 97 year: 2014 ident: 10.1016/j.rse.2019.111511_bib204 article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.017 – year: 2018 ident: 10.1016/j.rse.2019.111511_bib188 article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.03.014 – volume: 97 start-page: 26 year: 2005 ident: 10.1016/j.rse.2019.111511_bib35 article-title: Determination of phenological dates in boreal regions using normalized difference water index publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.011 – volume: 233 start-page: 171 year: 2017 ident: 10.1016/j.rse.2019.111511_bib209 article-title: Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2016.11.193 – volume: 115 start-page: 382 year: 2011 ident: 10.1016/j.rse.2019.111511_bib219 article-title: Monitoring fall foliage coloration dynamics using time-series satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.09.009 – volume: 256–257 start-page: 207 year: 2018 ident: 10.1016/j.rse.2019.111511_bib149 article-title: Scaling up spring phenology derived from remote sensing images publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.03.010 – volume: 35 start-page: 243 year: 1991 ident: 10.1016/j.rse.2019.111511_bib176 article-title: Global land cover classification by remote sensing: present capabilities and future possibilities publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(91)90016-Y – volume: 182 start-page: 13 year: 2016 ident: 10.1016/j.rse.2019.111511_bib58 article-title: Circumpolar vegetation dynamics product for global change study publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.04.022 – volume: 216 start-page: 177 year: 2016 ident: 10.1016/j.rse.2019.111511_bib208 article-title: Land surface phenology of China's temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2015.10.015 – volume: 18 start-page: 656 year: 2012 ident: 10.1016/j.rse.2019.111511_bib43 article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forests publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02521.x – volume: 13 start-page: 610 year: 2010 ident: 10.1016/j.rse.2019.111511_bib48 article-title: FLUXNET and modelling the global carbon cycle publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2006.01223.x – volume: 96 start-page: 366 year: 2005 ident: 10.1016/j.rse.2019.111511_bib161 article-title: A crop phenology detection method using time-series MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.03.008 – volume: 10 year: 2018 ident: 10.1016/j.rse.2019.111511_bib96 article-title: A method for robust estimation of vegetation seasonality from Landsat and sentinel-2 time series data publication-title: Remote Sens. doi: 10.3390/rs10040635 – volume: 10 start-page: 890 year: 2018 ident: 10.1016/j.rse.2019.111511_bib77 article-title: Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data publication-title: Remote Sens. doi: 10.3390/rs10060890 – volume: 45 start-page: 454 year: 2008 ident: 10.1016/j.rse.2019.111511_bib82 article-title: Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information publication-title: Mapp. Sci. Remote Sens. – volume: 16 start-page: 832 year: 2015 ident: 10.1016/j.rse.2019.111511_bib196 article-title: Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images publication-title: J. Zhejiang Univ. - Sci. B doi: 10.1631/jzus.B1500087 – volume: 131 start-page: 52 year: 2017 ident: 10.1016/j.rse.2019.111511_bib137 article-title: Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.006 – volume: 27 start-page: 3455 year: 2006 ident: 10.1016/j.rse.2019.111511_bib189 article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600639743 – year: 1997 ident: 10.1016/j.rse.2019.111511_bib111 – volume: 6 start-page: 1367 issue: 2 year: 2014 ident: 10.1016/j.rse.2019.111511_bib239 article-title: A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa publication-title: Remote Sensing doi: 10.3390/rs6021367 – volume: 33 start-page: 118 year: 1993 ident: 10.1016/j.rse.2019.111511_bib206 article-title: A method for determing the sensor degradation rates of NOAA AVHRR channels 1 and 2 publication-title: Q. J. Appl. Meteorol. doi: 10.1175/1520-0450(1994)033<0118:AMFDTS>2.0.CO;2 – volume: 147 start-page: 79 year: 2014 ident: 10.1016/j.rse.2019.111511_bib207 article-title: Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.001 – volume: 58 start-page: 257 year: 1996 ident: 10.1016/j.rse.2019.111511_bib52 article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00067-3 – volume: 6 start-page: 6680 year: 2014 ident: 10.1016/j.rse.2019.111511_bib140 article-title: Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI data publication-title: Remote Sens. doi: 10.3390/rs6076680 – volume: 151 start-page: 1711 year: 2011 ident: 10.1016/j.rse.2019.111511_bib165 article-title: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2011.07.003 – volume: 117 start-page: 381 year: 2012 ident: 10.1016/j.rse.2019.111511_bib191 article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.10.014 – volume: 8 start-page: 118 year: 2015 ident: 10.1016/j.rse.2019.111511_bib16 article-title: The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth publication-title: Int. J. Digit. Earth doi: 10.1080/17538947.2013.860196 – volume: 111 start-page: 367 year: 2006 ident: 10.1016/j.rse.2019.111511_bib222 article-title: Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements publication-title: J. Geophys. Res. Biogeosci. doi: 10.1029/2006JG000217 – volume: 60 start-page: 172 year: 2010 ident: 10.1016/j.rse.2019.111511_bib124 article-title: Phenology and citizen science publication-title: Bioscience doi: 10.1525/bio.2010.60.3.3 – volume: 21 start-page: 1911 year: 2000 ident: 10.1016/j.rse.2019.111511_bib156 article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series publication-title: Int. J. Remote Sens. doi: 10.1080/014311600209814 – start-page: 1338 year: 2001 ident: 10.1016/j.rse.2019.111511_bib74 – volume: 177 start-page: 13 year: 2016 ident: 10.1016/j.rse.2019.111511_bib144 article-title: Imaging phenology; scaling from camera plots to landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.018 |
| SSID | ssj0015871 |
| Score | 2.7154553 |
| Snippet | Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 111511 |
| SubjectTerms | Climate and land use Climate and vegetation corn Cubesat Data integration Data processing Data smoothing Detection Growing season Imagery information processing Land cover Land surface phenology Land use monitoring Multiscale analysis Multisensor fusion Phenological metrics extraction Phenology Remote sensing Satellite data Satellite observation Satellites spatial data Spatial discrimination Spatial resolution Specie-specific phenology Terrestrial ecosystems Time series time series analysis uncertainty Vegetation Vegetation changes |
| Title | A review of vegetation phenological metrics extraction using time-series, multispectral satellite data |
| URI | https://dx.doi.org/10.1016/j.rse.2019.111511 https://www.proquest.com/docview/2352366194 https://www.proquest.com/docview/2352441441 |
| Volume | 237 |
| WOSCitedRecordID | wos000509819300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqDQQvCAoT3QYyEk-UTEnqxPZjYWXAw4RgiL5FiWOPTSWdkrYqb_x0ji9x2iEmQEKqoiqXJsr39fPx8bkg9DwMyyhlBQ14yUhAuMgDBuNYkBBJZF6kMi1K02yCnp6y6ZR_6PV-tLkwqxmtKrZe86v_CjXsA7B16uxfwO1_FHbAdwAdtgA7bP8I-PFGOspKnrfhhDqWywvdN91HSzRDUObaNQtfGqeBbjUf6Me06mHCDU0yps7jb3JTvnMhhy6jzZu1HyUgLoeNjoa3UdQbCXTeNy2trsD093x24Un5BTg6sytMr2otN8dH7aHphfNmH-dr_bXjoHHafl1Wm04LmKGGWwEgPptmK9hT18oJtIbYsckKMqM6ycq2KG4VO7Z1Yn5Rf-uIuDyqG10ANeJ6PEiclm8X1f5kSh3CrcB-BRnSGaC7MU046OLu-N1k-t6vRCWM2q6L7tnalXETI3jtRr-zba6N8sZ0ObuP7rk5Bx5brjxAPVn10d6kQwgOOo1v-ujOiXRlzPvo9olp_Pz9IVJjbGmF5wp3tMKbtMKOVrijFTa0whu0eom3SIU9qbAm1SP0-c3k7PXbwPXoCASJySJgRISJIgkYooKmvKQiVbSI0rLIqSpjTiSMIiMiEh4pNgpDFdM8YQL2c6Y4WFB7aKeaV_IxwjDQgvkL7xgQgQtEwSLJhYqlykmo0niAwvbtZsIVsNd9VGZZG6l4mQEgmQYks4AM0At_yZWt3nLTyaSFLHPmpzUrM-DXTZcdtvBmTgaaLIZ5zSjVHsIBeuYPg3Lr5bi8kvOlPQcmI_DZ_7c7H6C73X_rEO0s6qV8gm6JFYBYP3VE_glqbMGj |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+vegetation+phenological+metrics+extraction+using+time-series%2C+multispectral+satellite+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Zeng%2C+Linglin&rft.au=Wardlow%2C+Brian+D.&rft.au=Xiang%2C+Daxiang&rft.au=Hu%2C+Shun&rft.date=2020-02-01&rft.pub=Elsevier+Inc&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=237&rft_id=info:doi/10.1016%2Fj.rse.2019.111511&rft.externalDocID=S0034425719305309 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |