A review of vegetation phenological metrics extraction using time-series, multispectral satellite data

Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing of environment Jg. 237; S. 111511
Hauptverfasser: Zeng, Linglin, Wardlow, Brian D., Xiang, Daxiang, Hu, Shun, Li, Deren
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier Inc 01.02.2020
Elsevier BV
Schlagworte:
ISSN:0034-4257, 1879-0704
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization. •Review of satellite remote sensing-based land surface phenology detection methods.•Discussion of advantages and drawbacks of phenological metrics extraction methods.•Review of error sources and methods to reduce their effects on phenology detection.•Opportunities and challenges related to improve phonological metrics extraction.
AbstractList Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization.
Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of climate-vegetation interactions, land use/land cover changes and variation in year-to-year vegetation productivity. Satellite remote sensing data have been widely used for vegetation phenology monitoring over large geographic domains using various types of observations and methods over the past several decades. The goal of this paper is to present a detailed review of existing methods for phenology detection and emerging new techniques based on the analysis of time-series, multispectral remote sensing imagery. This paper summarizes the objective and applications of detecting general vegetation phenology stages (e.g., green onset, time or peak greenness and growing season length) often termed ‘land surface phenology’, as well as more advanced methods that estimate species-specific phenological stages (e.g., silking stage of maize). Common data processing methods, such as data smoothing, applied to prepare the time-series remote sensing observations to be applied to phenological detection methods are presented. Specific land surface phenology detection methods as well as species-specific phenology detection methods based on multispectral satellite data are then discussed. The impact of different error sources in the data on remote-sensing based phenology detection are also discussed in detail, as well as ways to reduce these uncertainties and errors. Joint analysis of multi-scale observations ranging from satellite to more recent ground-based sensors is helpful for us to understand satellite-based phenology detection mechanism and extent phenology detection to regional scale in the future. Finally, emerging opportunities to further advance remote sensing of phenology is presented that includes observations from Cubesats, near-surface observations such as PhenoCams and image data fusion techniques to improve the spatial resolution of time-series image data sets needed for phenological characterization. •Review of satellite remote sensing-based land surface phenology detection methods.•Discussion of advantages and drawbacks of phenological metrics extraction methods.•Review of error sources and methods to reduce their effects on phenology detection.•Opportunities and challenges related to improve phonological metrics extraction.
ArticleNumber 111511
Author Xiang, Daxiang
Hu, Shun
Wardlow, Brian D.
Zeng, Linglin
Li, Deren
Author_xml – sequence: 1
  givenname: Linglin
  surname: Zeng
  fullname: Zeng, Linglin
  organization: College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
– sequence: 2
  givenname: Brian D.
  surname: Wardlow
  fullname: Wardlow, Brian D.
  email: bwardlow2@unl.edu
  organization: Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln, 3310 Holdrege St, Lincoln, 68583, USA
– sequence: 3
  givenname: Daxiang
  surname: Xiang
  fullname: Xiang, Daxiang
  organization: Changjiang River Scientifc Research Institute, Changjiang River Water Resources Commission, Wuhan, China
– sequence: 4
  givenname: Shun
  surname: Hu
  fullname: Hu, Shun
  organization: State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
– sequence: 5
  givenname: Deren
  surname: Li
  fullname: Li, Deren
  organization: State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, 129 Luoyu Road, Wuhan, 430079, China
BookMark eNp9kT1PwzAQhi0EEqXwA9gssTCQ4kucOBETQnxJSCwwW65zLq6SuNgOH_8et2FiYLJ0ft7T3XNHZH9wAxJyCmwBDKrL9cIHXOQMmgUAlAB7ZAa1aDImGN8nM8YKnvG8FIfkKIQ1Y1DWAmbEXFOPHxY_qTP0A1cYVbRuoJs3HFznVlarjvYYvdWB4lf0Su_-x2CHFY22xyygtxguaD920YYN6gR1NKiIXWcj0lZFdUwOjOoCnvy-c_J6d_ty85A9Pd8_3lw_ZZrnPGY116w0vBS80KJqWqErI5ZQtUslTJs3HFmRFtFlA6YuGDO5UGWtU72pTcOhmJPzqe_Gu_cRQ5S9DToNogZ0Y5B5UeacA9-hZ3_QtRv9kKbbUUVVQcMTJSZKexeCRyO1nRSlLW0ngcmtf7mWyb_c-peT_5SEP8mNt73y3_9mrqYMJkfpKl4GbXHQ2FqfvMrW2X_SP0Ran_E
CitedBy_id crossref_primary_10_3390_su17072970
crossref_primary_10_1007_s10668_025_06276_3
crossref_primary_10_1016_j_jag_2021_102435
crossref_primary_10_1016_j_jag_2021_102556
crossref_primary_10_1016_j_scitotenv_2022_155077
crossref_primary_10_3390_rs17172927
crossref_primary_10_1029_2023JG007951
crossref_primary_10_1016_j_ecoinf_2025_103109
crossref_primary_10_1016_j_jag_2024_104333
crossref_primary_10_1109_JSTARS_2024_3517415
crossref_primary_10_3390_rs14061347
crossref_primary_10_1016_j_jag_2022_102708
crossref_primary_10_3390_rs16071222
crossref_primary_10_1016_j_foreco_2024_121878
crossref_primary_10_1016_j_ecolind_2020_107055
crossref_primary_10_1111_gcb_70116
crossref_primary_10_3390_rs15225366
crossref_primary_10_1016_j_rse_2023_113860
crossref_primary_10_1016_j_jhydrol_2024_130977
crossref_primary_10_1029_2023EF003788
crossref_primary_10_3390_rs17030451
crossref_primary_10_3390_rs15194783
crossref_primary_10_1002_gdj3_173
crossref_primary_10_3390_rs15215203
crossref_primary_10_1016_j_ecoinf_2025_103216
crossref_primary_10_1016_j_ecolind_2023_111392
crossref_primary_10_3390_s20195551
crossref_primary_10_1007_s10333_023_00934_w
crossref_primary_10_1007_s10333_024_01009_0
crossref_primary_10_3390_f13121973
crossref_primary_10_3390_rs14040997
crossref_primary_10_3390_rs14030721
crossref_primary_10_1016_j_foreco_2024_121742
crossref_primary_10_1109_TGRS_2022_3170338
crossref_primary_10_3390_rs14225725
crossref_primary_10_1016_j_jenvman_2025_126680
crossref_primary_10_1016_j_eswa_2021_115929
crossref_primary_10_1016_j_scitotenv_2024_173049
crossref_primary_10_1016_j_scitotenv_2023_168778
crossref_primary_10_3390_rs14061331
crossref_primary_10_1007_s00500_025_10496_0
crossref_primary_10_1016_j_ecoinf_2022_101898
crossref_primary_10_1080_10095020_2025_2541071
crossref_primary_10_3390_rs16142520
crossref_primary_10_3390_rs14225730
crossref_primary_10_1016_j_agrformet_2025_110661
crossref_primary_10_1016_j_compag_2024_109274
crossref_primary_10_1016_j_agrformet_2024_110141
crossref_primary_10_1029_2021MS002730
crossref_primary_10_1038_s41586_025_09410_3
crossref_primary_10_1016_j_rse_2023_113521
crossref_primary_10_2989_10220119_2024_2360991
crossref_primary_10_1016_j_agrformet_2024_110147
crossref_primary_10_3390_rs13112128
crossref_primary_10_3390_rs13020286
crossref_primary_10_1016_j_envres_2023_115634
crossref_primary_10_1016_j_jhydrol_2023_129420
crossref_primary_10_1016_j_scitotenv_2024_174262
crossref_primary_10_1007_s11119_023_10064_2
crossref_primary_10_3390_rs13204032
crossref_primary_10_1007_s11119_024_10149_6
crossref_primary_10_1007_s12518_021_00368_1
crossref_primary_10_3389_ffgc_2021_687988
crossref_primary_10_1016_j_agrformet_2024_110253
crossref_primary_10_1080_07900627_2023_2293862
crossref_primary_10_1111_sjtg_12476
crossref_primary_10_1016_j_compag_2024_109260
crossref_primary_10_1080_01431161_2023_2189033
crossref_primary_10_1016_j_foreco_2023_121349
crossref_primary_10_1016_j_eja_2025_127542
crossref_primary_10_1016_j_scitotenv_2021_152309
crossref_primary_10_3390_rs14225749
crossref_primary_10_1016_j_agrformet_2024_110019
crossref_primary_10_1111_1365_2664_14830
crossref_primary_10_3390_rs14092055
crossref_primary_10_1111_nph_19684
crossref_primary_10_3390_agriculture14112052
crossref_primary_10_3390_rs17061025
crossref_primary_10_1080_15481603_2024_2426598
crossref_primary_10_1109_JSTARS_2024_3357216
crossref_primary_10_3390_f14061080
crossref_primary_10_1016_j_isprsjprs_2023_10_015
crossref_primary_10_1016_j_agrformet_2021_108489
crossref_primary_10_1016_j_jenvman_2023_119131
crossref_primary_10_3390_rs17111853
crossref_primary_10_3390_rs14246331
crossref_primary_10_1016_j_compag_2024_109212
crossref_primary_10_1007_s10661_021_09356_9
crossref_primary_10_3390_rs12152384
crossref_primary_10_1016_j_rse_2023_113785
crossref_primary_10_3390_rs13081597
crossref_primary_10_1177_03091333221114737
crossref_primary_10_1016_j_jag_2025_104769
crossref_primary_10_1109_TGRS_2023_3343071
crossref_primary_10_1109_JSTARS_2024_3492177
crossref_primary_10_1016_j_agsy_2025_104338
crossref_primary_10_1016_j_scs_2025_106680
crossref_primary_10_1080_10095020_2025_2547956
crossref_primary_10_1007_s12524_025_02129_8
crossref_primary_10_1016_j_jenvman_2022_115612
crossref_primary_10_3390_rs13112060
crossref_primary_10_3390_rs13112181
crossref_primary_10_5194_bg_20_4259_2023
crossref_primary_10_3390_automation4010007
crossref_primary_10_1016_j_agrformet_2024_110310
crossref_primary_10_1029_2022JG007183
crossref_primary_10_1371_journal_pone_0250825
crossref_primary_10_3390_rs14071573
crossref_primary_10_1016_j_ecolind_2021_107682
crossref_primary_10_1109_TGRS_2023_3307123
crossref_primary_10_3390_rs13152932
crossref_primary_10_1080_10106049_2024_2371923
crossref_primary_10_1080_01431161_2021_1899331
crossref_primary_10_1002_ppj2_20031
crossref_primary_10_1016_j_rse_2022_113002
crossref_primary_10_1038_s41598_025_14714_5
crossref_primary_10_1371_journal_pone_0300486
crossref_primary_10_1109_JSTARS_2022_3142395
crossref_primary_10_1002_gdj3_268
crossref_primary_10_1016_j_eja_2025_127581
crossref_primary_10_1016_j_rse_2023_113790
crossref_primary_10_1016_j_rse_2022_113370
crossref_primary_10_1016_j_indic_2025_100631
crossref_primary_10_1109_JSTARS_2024_3516212
crossref_primary_10_3390_rs14092136
crossref_primary_10_3390_rs15225413
crossref_primary_10_1016_j_rse_2021_112810
crossref_primary_10_1016_j_ecolind_2025_113627
crossref_primary_10_3390_atmos13111854
crossref_primary_10_1016_j_accre_2024_04_005
crossref_primary_10_1016_j_ecolind_2022_108673
crossref_primary_10_1016_j_scitotenv_2024_172014
crossref_primary_10_1109_TGRS_2025_3567469
crossref_primary_10_3390_ijerph20042844
crossref_primary_10_1002_esp_5835
crossref_primary_10_1029_2024JG008266
crossref_primary_10_3390_rs16142583
crossref_primary_10_1016_j_srs_2025_100227
crossref_primary_10_3390_rs14091957
crossref_primary_10_3390_s25072106
crossref_primary_10_3390_rs15051245
crossref_primary_10_1016_j_rse_2022_113060
crossref_primary_10_3389_fmars_2022_977050
crossref_primary_10_1016_j_ecolind_2025_113741
crossref_primary_10_1016_j_rsase_2020_100460
crossref_primary_10_1080_01431161_2025_2487228
crossref_primary_10_1016_j_cj_2025_03_012
crossref_primary_10_1016_j_cj_2025_03_013
crossref_primary_10_1016_j_isprsjprs_2024_07_031
crossref_primary_10_3390_ani14101468
crossref_primary_10_1016_j_jag_2021_102385
crossref_primary_10_1080_01431161_2021_1978584
crossref_primary_10_3390_rs15143599
crossref_primary_10_1016_j_compag_2025_110136
crossref_primary_10_3390_s25072214
crossref_primary_10_1007_s10668_023_04347_x
crossref_primary_10_3390_rs13245173
crossref_primary_10_3390_rs16132414
crossref_primary_10_1016_j_rse_2025_114787
crossref_primary_10_1080_17538947_2023_2300311
crossref_primary_10_3390_rs15133439
crossref_primary_10_1016_j_laa_2024_06_002
crossref_primary_10_1016_j_agrformet_2023_109357
crossref_primary_10_3390_rs15215257
crossref_primary_10_3390_rs12172726
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1080_01431161_2025_2511207
crossref_primary_10_1007_s11430_023_1363_3
crossref_primary_10_3390_s24030834
crossref_primary_10_3390_rs14194859
crossref_primary_10_1111_nph_19229
crossref_primary_10_3390_rs13214347
crossref_primary_10_1016_j_rse_2025_114656
crossref_primary_10_1016_j_rse_2022_113046
crossref_primary_10_3390_rs15133404
crossref_primary_10_3390_land14091745
crossref_primary_10_1016_j_scitotenv_2024_175753
crossref_primary_10_1111_gcb_16436
crossref_primary_10_3390_rs15082090
crossref_primary_10_3390_rs15143456
crossref_primary_10_3390_rs16132309
crossref_primary_10_3390_rs13132477
crossref_primary_10_3390_rs17173051
crossref_primary_10_1002_ecs2_4681
crossref_primary_10_1109_JSTARS_2024_3411304
crossref_primary_10_1016_j_fcr_2023_108847
crossref_primary_10_3390_rs16173183
crossref_primary_10_1016_j_catena_2025_108770
crossref_primary_10_1016_j_ecolind_2025_113996
crossref_primary_10_1016_j_ecolind_2021_108290
crossref_primary_10_3390_rs14143462
crossref_primary_10_1016_j_atech_2025_100816
crossref_primary_10_1088_1748_9326_adf23e
crossref_primary_10_1016_j_scitotenv_2024_171088
crossref_primary_10_1016_j_jenvman_2025_124326
crossref_primary_10_1016_j_scitotenv_2022_155154
crossref_primary_10_3390_rs14246290
crossref_primary_10_1186_s42408_023_00218_y
crossref_primary_10_1002_csr_70164
crossref_primary_10_1016_j_jhydrol_2024_131218
crossref_primary_10_3389_fpls_2023_1130659
crossref_primary_10_1007_s11760_023_02872_w
crossref_primary_10_2166_wh_2024_102
crossref_primary_10_1016_j_rse_2025_114997
crossref_primary_10_3390_agronomy10050618
crossref_primary_10_1007_s11769_021_1226_4
crossref_primary_10_3390_rs13214251
crossref_primary_10_3390_rs16101786
crossref_primary_10_3390_rs14030517
crossref_primary_10_1016_j_atech_2025_100809
crossref_primary_10_1109_JSTARS_2024_3495048
crossref_primary_10_1080_22797254_2024_2422315
crossref_primary_10_3389_fpls_2022_805738
crossref_primary_10_3390_rs12203383
crossref_primary_10_1007_s10708_025_11430_5
crossref_primary_10_1109_JSTARS_2020_3039554
crossref_primary_10_1080_17538947_2025_2498601
crossref_primary_10_1007_s00484_024_02815_1
crossref_primary_10_1016_j_compag_2023_107721
crossref_primary_10_1007_s11119_023_10079_9
crossref_primary_10_1016_j_rse_2025_114740
crossref_primary_10_1038_s41597_024_03364_3
crossref_primary_10_1109_JSTARS_2025_3595541
crossref_primary_10_1016_j_rsase_2022_100712
crossref_primary_10_3390_rs15225382
crossref_primary_10_1080_01431161_2021_1939908
crossref_primary_10_1109_JSTARS_2023_3269908
crossref_primary_10_1016_j_agrformet_2022_109157
crossref_primary_10_3390_rs12071199
crossref_primary_10_1016_j_rse_2021_112716
crossref_primary_10_3390_rs13193953
crossref_primary_10_1016_j_eja_2024_127327
crossref_primary_10_1088_1748_9326_ade9e2
crossref_primary_10_1016_j_psep_2025_107058
crossref_primary_10_1016_j_agwat_2022_107576
crossref_primary_10_1002_ldr_3751
crossref_primary_10_1016_j_ecolind_2023_110815
crossref_primary_10_1080_10095020_2024_2328100
crossref_primary_10_1109_TGRS_2024_3430528
crossref_primary_10_1016_j_ecoinf_2023_102140
crossref_primary_10_1016_j_rse_2024_114530
crossref_primary_10_3390_rs14030674
crossref_primary_10_1016_j_csag_2024_100008
crossref_primary_10_1016_j_atech_2022_100046
crossref_primary_10_1016_j_rse_2024_114309
crossref_primary_10_3390_rs15215225
crossref_primary_10_3390_cli9030047
crossref_primary_10_3390_agronomy12081773
crossref_primary_10_3390_geomatics3010012
crossref_primary_10_1016_j_jag_2021_102323
crossref_primary_10_3390_rs13112202
crossref_primary_10_1016_j_agrformet_2023_109573
crossref_primary_10_3390_w14152324
crossref_primary_10_1007_s11676_025_01843_w
crossref_primary_10_1007_s10342_023_01642_0
crossref_primary_10_1007_s41651_025_00220_9
crossref_primary_10_1016_j_rse_2024_114301
crossref_primary_10_3390_rs16224270
crossref_primary_10_1016_j_ecolind_2025_113557
crossref_primary_10_1080_01431161_2023_2264496
crossref_primary_10_3390_rs14020244
crossref_primary_10_1080_10106049_2025_2452252
crossref_primary_10_1016_j_rse_2021_112419
crossref_primary_10_1016_j_jenvman_2022_115134
crossref_primary_10_5194_bg_21_473_2024
crossref_primary_10_1016_j_ecoinf_2024_102659
crossref_primary_10_3390_rs15143615
crossref_primary_10_3390_f15030474
crossref_primary_10_3390_rs14133160
crossref_primary_10_1016_j_isprsjprs_2024_08_009
crossref_primary_10_3389_fenvs_2023_1275844
crossref_primary_10_3390_rs13163298
crossref_primary_10_3390_rs15040979
crossref_primary_10_1111_gcb_17231
crossref_primary_10_3390_rs14215337
crossref_primary_10_1016_j_ecolind_2022_109492
crossref_primary_10_1088_1748_9326_ac8499
crossref_primary_10_3390_rs14163946
crossref_primary_10_1016_j_ecolind_2022_109375
crossref_primary_10_1016_j_scijus_2024_09_006
crossref_primary_10_3390_agriculture14030345
crossref_primary_10_3390_rs13153015
crossref_primary_10_3390_rs14010209
crossref_primary_10_3389_fclim_2021_715837
crossref_primary_10_1016_j_agrformet_2023_109549
crossref_primary_10_1016_j_isprsjprs_2024_08_011
crossref_primary_10_3390_f15030487
crossref_primary_10_1007_s11356_022_24288_8
crossref_primary_10_1016_j_ecoinf_2023_102378
crossref_primary_10_1016_j_isprsjprs_2025_03_024
crossref_primary_10_3390_ijgi11080423
crossref_primary_10_59717_j_xinn_geo_2024_100070
crossref_primary_10_3390_rs14236050
crossref_primary_10_1016_j_jag_2023_103422
crossref_primary_10_1016_j_isprsjprs_2024_09_023
crossref_primary_10_1007_s11053_024_10434_1
crossref_primary_10_3390_su15076012
crossref_primary_10_1016_j_foreco_2024_122279
crossref_primary_10_5194_acp_25_7863_2025
crossref_primary_10_1016_j_envsoft_2020_104666
crossref_primary_10_3390_rs13132528
crossref_primary_10_1038_s41598_023_41048_x
crossref_primary_10_1007_s11629_023_8346_5
crossref_primary_10_3390_agriculture14091608
crossref_primary_10_1029_2022JG007315
crossref_primary_10_1590_0001_3765202120200712
crossref_primary_10_3390_rs13163073
crossref_primary_10_3390_rs14010101
crossref_primary_10_3390_rs15215097
crossref_primary_10_1016_j_scitotenv_2022_156990
crossref_primary_10_7780_kjrs_2024_40_5_2_8
crossref_primary_10_1016_j_agwat_2021_106884
crossref_primary_10_1016_j_rse_2021_112751
crossref_primary_10_3390_rs13071397
crossref_primary_10_1016_j_isprsjprs_2025_04_039
crossref_primary_10_1016_j_rse_2021_112743
crossref_primary_10_1080_15481603_2025_2510869
crossref_primary_10_1002_eap_2526
crossref_primary_10_3390_land14020244
crossref_primary_10_1016_j_ecss_2025_109264
crossref_primary_10_1016_j_ecoinf_2024_102767
crossref_primary_10_3390_rs13040668
crossref_primary_10_1016_j_agrformet_2023_109646
crossref_primary_10_1016_j_cj_2022_03_001
crossref_primary_10_3390_rs17050933
crossref_primary_10_3389_ffgc_2022_1032066
crossref_primary_10_1016_j_agee_2023_108603
crossref_primary_10_1016_j_ecolind_2025_114203
crossref_primary_10_3390_rs15245689
crossref_primary_10_3390_rs15205032
crossref_primary_10_1007_s10661_025_14140_0
crossref_primary_10_3390_f16091472
crossref_primary_10_1016_j_jag_2024_104097
crossref_primary_10_3390_rs17091599
crossref_primary_10_5194_bg_18_4117_2021
crossref_primary_10_3390_rs16122133
crossref_primary_10_3390_f16040608
crossref_primary_10_3390_rs16224209
crossref_primary_10_1016_j_rsase_2024_101230
crossref_primary_10_3390_rs13142670
crossref_primary_10_1093_gigascience_giac052
crossref_primary_10_1016_j_jenvman_2020_111402
crossref_primary_10_1080_15481603_2024_2309843
crossref_primary_10_1016_j_jhydrol_2022_128605
crossref_primary_10_3390_rs13142678
crossref_primary_10_1016_j_agwat_2024_108962
crossref_primary_10_3390_rs16193687
crossref_primary_10_3390_rs17142503
crossref_primary_10_3390_agriculture12070945
crossref_primary_10_1016_j_agrformet_2023_109869
crossref_primary_10_1016_j_pbi_2020_04_011
crossref_primary_10_1007_s40003_023_00685_4
crossref_primary_10_1016_j_agrformet_2023_109862
crossref_primary_10_1080_01431161_2022_2135415
crossref_primary_10_3390_rs14163909
crossref_primary_10_3390_rs16234370
crossref_primary_10_1016_j_compag_2025_110297
crossref_primary_10_1016_j_cosust_2020_09_006
crossref_primary_10_3390_f16050771
crossref_primary_10_3390_rs13091836
crossref_primary_10_1080_15481603_2024_2421574
crossref_primary_10_1080_2150704X_2022_2106455
crossref_primary_10_1016_j_isprsjprs_2025_02_026
crossref_primary_10_1016_j_rse_2020_112113
crossref_primary_10_1080_01431161_2022_2079018
crossref_primary_10_1016_j_rse_2021_112799
crossref_primary_10_1016_j_rsase_2025_101605
crossref_primary_10_1080_01431161_2020_1851802
crossref_primary_10_3390_rs14081812
crossref_primary_10_3390_rs12223729
crossref_primary_10_1038_s41598_024_66338_w
crossref_primary_10_3390_rs16162921
crossref_primary_10_1080_15481603_2024_2333587
crossref_primary_10_1016_j_ecolind_2025_114131
crossref_primary_10_1080_01431161_2025_2549532
crossref_primary_10_3390_rs13214426
crossref_primary_10_1016_j_ecolind_2025_113166
crossref_primary_10_1109_TGRS_2023_3284992
crossref_primary_10_1016_j_rsase_2024_101210
crossref_primary_10_1016_j_rse_2020_112232
crossref_primary_10_1002_jsfa_11588
crossref_primary_10_1016_j_rse_2020_112004
crossref_primary_10_3390_d15101064
crossref_primary_10_1016_j_jhydrol_2022_128755
crossref_primary_10_3390_rs13071355
crossref_primary_10_3390_fire8080320
crossref_primary_10_3390_f12050574
crossref_primary_10_3390_rs13132435
crossref_primary_10_3390_rs13245036
crossref_primary_10_3390_rs15143537
crossref_primary_10_3390_s25072239
crossref_primary_10_3390_rs13101958
crossref_primary_10_1016_j_ecolind_2025_114122
crossref_primary_10_3390_rs15082205
crossref_primary_10_3390_rs15040964
crossref_primary_10_1016_j_rsase_2024_101325
crossref_primary_10_3390_land14010132
crossref_primary_10_1016_j_isprsjprs_2021_09_011
crossref_primary_10_1111_gcb_16592
crossref_primary_10_3390_rs14215621
crossref_primary_10_1016_j_isprsjprs_2020_11_019
crossref_primary_10_3390_su16219389
crossref_primary_10_3390_rs16050914
crossref_primary_10_3390_agronomy15061329
crossref_primary_10_3390_rs16122173
crossref_primary_10_1007_s00484_023_02502_7
crossref_primary_10_1002_widm_1522
crossref_primary_10_3390_agronomy13122861
crossref_primary_10_1016_j_isprsjprs_2024_03_018
crossref_primary_10_3390_rs12091413
crossref_primary_10_3390_rs15235565
crossref_primary_10_3390_rs13234736
crossref_primary_10_1016_j_apenergy_2024_123994
crossref_primary_10_3390_rs17091560
crossref_primary_10_3390_s20020435
crossref_primary_10_1016_j_isprsjprs_2021_08_003
crossref_primary_10_1016_j_ecolind_2025_114038
crossref_primary_10_1111_2041_210X_14365
crossref_primary_10_1016_j_gecco_2025_e03824
crossref_primary_10_1016_j_rse_2021_112368
crossref_primary_10_1371_journal_pone_0302882
crossref_primary_10_3390_rs14102499
crossref_primary_10_3390_su15021373
crossref_primary_10_3390_rs16203810
crossref_primary_10_3390_rs12223738
crossref_primary_10_1016_j_agrformet_2020_108316
crossref_primary_10_1016_j_rse_2024_114043
crossref_primary_10_1016_j_jhydrol_2025_133663
crossref_primary_10_1029_2022EF002888
crossref_primary_10_1016_j_jag_2022_103092
crossref_primary_10_1111_2041_210X_70067
crossref_primary_10_34133_plantphenomics_0043
crossref_primary_10_1029_2023EF004127
crossref_primary_10_1080_10106049_2025_2547928
crossref_primary_10_3390_f15122150
crossref_primary_10_1016_j_rse_2023_113800
crossref_primary_10_3390_rs12183062
crossref_primary_10_3390_rs16183429
crossref_primary_10_1016_j_scitotenv_2022_159064
crossref_primary_10_1016_j_scitotenv_2024_175181
crossref_primary_10_1016_j_ecoinf_2024_102917
crossref_primary_10_1016_j_ecolind_2024_112919
crossref_primary_10_1109_TGRS_2024_3404638
crossref_primary_10_1016_j_compag_2024_109313
crossref_primary_10_1016_j_rse_2021_112471
crossref_primary_10_3390_rs17122059
crossref_primary_10_3390_rs16020374
crossref_primary_10_1016_j_compag_2023_108029
crossref_primary_10_1016_j_jenvman_2025_126293
crossref_primary_10_3390_rs13234870
crossref_primary_10_3390_rs17162858
crossref_primary_10_1016_j_agrformet_2021_108516
crossref_primary_10_3390_rs15235537
crossref_primary_10_1016_j_scitotenv_2023_168488
crossref_primary_10_1109_TGRS_2021_3124798
crossref_primary_10_3390_rs16050826
crossref_primary_10_1016_j_compag_2025_110953
crossref_primary_10_3390_rs16203833
crossref_primary_10_1029_2025EF006117
crossref_primary_10_1093_forestry_cpad039
crossref_primary_10_3390_agronomy11122439
crossref_primary_10_1016_j_indcrop_2025_120753
crossref_primary_10_1016_j_isprsjprs_2020_10_005
crossref_primary_10_3390_agriengineering6040217
crossref_primary_10_3390_f14122310
crossref_primary_10_1016_j_biosystemseng_2023_06_002
crossref_primary_10_3390_rs13010086
crossref_primary_10_1016_j_ecolind_2023_110448
crossref_primary_10_3389_fevo_2023_1093454
crossref_primary_10_1093_insilicoplants_diab017
crossref_primary_10_1002_rse2_222
crossref_primary_10_1002_rse2_223
crossref_primary_10_1016_j_rse_2023_113827
crossref_primary_10_3390_s25113570
crossref_primary_10_1016_j_isprsjprs_2025_06_033
crossref_primary_10_1016_j_isprsjprs_2025_04_022
crossref_primary_10_3390_rs16234521
crossref_primary_10_3390_rs14122909
crossref_primary_10_1038_s43017_022_00317_5
crossref_primary_10_3390_rs15041074
crossref_primary_10_1080_20964471_2025_2540703
crossref_primary_10_1016_j_foreco_2020_118663
crossref_primary_10_1007_s10340_024_01771_4
crossref_primary_10_1016_j_isprsjprs_2022_09_007
crossref_primary_10_1016_j_compag_2020_105534
crossref_primary_10_3390_f12030305
crossref_primary_10_1109_JSTARS_2023_3297713
crossref_primary_10_1016_j_cj_2023_12_010
crossref_primary_10_1109_JSTARS_2023_3310617
crossref_primary_10_3390_rs15092413
crossref_primary_10_1016_j_scitotenv_2023_167092
crossref_primary_10_3390_rs14153645
crossref_primary_10_3390_rs13142716
crossref_primary_10_1016_j_jag_2025_104804
crossref_primary_10_1016_j_atmosres_2024_107405
crossref_primary_10_1038_s41597_023_02695_x
crossref_primary_10_3390_rs13152889
crossref_primary_10_1111_1365_2745_13897
crossref_primary_10_1016_j_agrformet_2025_110573
crossref_primary_10_1515_geo_2022_0369
crossref_primary_10_1016_j_rse_2024_114083
crossref_primary_10_1007_s10661_024_13270_1
crossref_primary_10_1088_1748_9326_aca41e
crossref_primary_10_3390_rs14153639
crossref_primary_10_3390_rs15092420
crossref_primary_10_1016_j_rse_2022_113310
crossref_primary_10_1016_j_ecolind_2024_111983
crossref_primary_10_1016_j_jag_2024_103984
crossref_primary_10_1016_j_scs_2023_104877
crossref_primary_10_1080_15481603_2025_2508574
crossref_primary_10_3390_agronomy11122465
crossref_primary_10_1080_15481603_2025_2531593
crossref_primary_10_1016_j_scitotenv_2021_152462
crossref_primary_10_1016_j_jag_2024_103867
crossref_primary_10_3390_rs13142727
crossref_primary_10_1016_j_rse_2023_113967
crossref_primary_10_1109_TGRS_2021_3101127
crossref_primary_10_1088_1748_9326_ada56e
crossref_primary_10_3390_rs14174415
crossref_primary_10_1111_ecog_06768
crossref_primary_10_3390_rs14010146
crossref_primary_10_1016_j_atech_2025_101378
crossref_primary_10_1016_j_agrformet_2024_110182
crossref_primary_10_3390_rs16152730
crossref_primary_10_3390_rs14184585
crossref_primary_10_3390_land11040504
crossref_primary_10_3390_rs14153629
crossref_primary_10_3390_rs16244672
crossref_primary_10_1117_1_JRS_17_014517
crossref_primary_10_3390_rs13050933
crossref_primary_10_1007_s12145_024_01443_y
crossref_primary_10_1109_JSTARS_2022_3196494
crossref_primary_10_1007_s11442_025_2357_9
crossref_primary_10_1016_j_agrformet_2020_108019
crossref_primary_10_1016_j_agrformet_2025_110596
crossref_primary_10_5194_essd_14_2851_2022
crossref_primary_10_1186_s13595_022_01130_2
crossref_primary_10_1371_journal_pone_0282364
crossref_primary_10_3390_agriculture15151578
crossref_primary_10_1016_j_ecolind_2022_109080
crossref_primary_10_1002_eco_70066
crossref_primary_10_1016_j_rse_2025_115016
crossref_primary_10_1016_j_scitotenv_2023_168161
crossref_primary_10_1139_cjz_2023_0113
Cites_doi 10.5194/bg-12-5995-2015
10.1080/01431161.2014.994719
10.1016/j.rse.2014.01.007
10.1016/j.rse.2016.02.020
10.1016/j.rse.2018.04.030
10.1016/j.rse.2014.03.017
10.1016/j.rse.2014.10.012
10.1029/2012JG002070
10.1016/j.agrformet.2017.02.026
10.1111/j.1365-2486.2010.02164.x
10.1080/01431160802549237
10.3390/rs9090902
10.1016/j.asr.2005.08.037
10.1016/j.rse.2005.10.021
10.1016/j.rse.2007.01.004
10.1016/j.rse.2004.03.014
10.1016/S1161-0301(02)00110-7
10.1016/j.agrformet.2011.07.008
10.1016/j.rse.2018.09.002
10.1109/TGRS.2016.2552462
10.1016/j.rse.2013.02.007
10.1016/j.agrformet.2017.10.015
10.1016/j.ejor.2003.08.037
10.1038/s41598-018-23804-6
10.1016/j.rse.2017.11.009
10.3390/rs9030254
10.1016/j.rse.2016.11.021
10.1109/JSTARS.2013.2294956
10.1080/01431161.2014.883090
10.1109/TGRS.2003.817274
10.1016/j.rse.2008.09.003
10.1016/0034-4257(79)90013-0
10.1080/10106049.2012.760004
10.1109/TGRS.2012.2223475
10.1016/j.rse.2018.08.022
10.1016/j.rse.2015.01.011
10.1111/j.1365-2486.2005.00949.x
10.1016/j.agrformet.2014.09.009
10.1080/01431161.2014.883105
10.1016/0034-4257(94)90143-0
10.1016/j.rse.2005.03.011
10.1080/01431169008955174
10.1016/j.rse.2016.09.014
10.1016/j.ecoinf.2016.05.004
10.1016/j.rse.2010.08.013
10.1016/j.rse.2017.03.009
10.1016/j.rse.2006.05.003
10.1016/S1161-0301(02)00107-7
10.1016/j.rse.2011.12.001
10.1038/nclimate2253
10.1109/TGRS.2011.2166965
10.1016/j.rse.2019.01.010
10.3390/s16122099
10.1111/geb.12044
10.1029/2005JD006511
10.2307/3235884
10.1016/0034-4257(88)90106-X
10.1007/s00484-018-1512-8
10.5194/bg-10-4055-2013
10.1016/j.isprsjprs.2018.02.011
10.1016/j.rse.2015.03.018
10.1016/j.rse.2016.03.039
10.1109/TGRS.2013.2247611
10.1016/j.rse.2007.05.017
10.1016/j.rse.2011.10.006
10.1080/01621459.1988.10478639
10.1080/01431168608948945
10.1029/97GB00330
10.1016/j.rse.2011.05.006
10.1080/01431160600639743
10.1016/j.rse.2014.07.010
10.1109/TGRS.2007.903044
10.1016/j.rse.2018.06.047
10.1016/j.rse.2015.01.012
10.1016/j.isprsjprs.2017.09.002
10.4287/jsprs.38.5_36
10.1109/36.981354
10.2747/1548-1603.45.1.16
10.1080/01431161.2010.542194
10.1038/386698a0
10.1080/01431169408954343
10.1016/j.ecoinf.2018.05.006
10.1016/S0168-1923(97)00027-0
10.1016/j.compag.2018.03.007
10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2
10.1016/S0034-4257(03)00103-2
10.1016/j.rse.2005.10.002
10.1016/S0034-4257(00)00175-9
10.1080/01431168408948860
10.1016/j.agrformet.2018.03.003
10.1016/j.asr.2007.05.066
10.1016/j.rse.2006.04.014
10.1109/JSTARS.2010.2075916
10.1016/j.agrformet.2017.10.008
10.3390/rs61111518
10.1109/36.655330
10.3390/rs9121271
10.3390/rs10050791
10.3390/rs5020982
10.1016/j.rse.2016.11.004
10.1016/j.rse.2015.03.031
10.1016/j.rse.2009.04.016
10.1016/S0034-4257(03)00144-5
10.1111/gcb.13562
10.5194/bg-11-4305-2014
10.1109/TGRS.2006.872089
10.1080/01431160116874
10.1016/j.rse.2008.06.017
10.1016/j.rse.2010.04.019
10.1002/ecs2.1627
10.1016/j.rse.2007.07.019
10.13031/2013.36451
10.1098/rspa.1998.0193
10.1007/s11284-014-1239-x
10.1080/01431160600967128
10.5194/bg-13-5085-2016
10.1016/j.rse.2017.01.001
10.1021/ac034173t
10.1016/j.rse.2010.04.005
10.1016/j.rse.2008.06.006
10.1080/01431161.2014.903437
10.1109/LGRS.2013.2253760
10.1080/01431160310001618455
10.1016/j.rse.2010.05.032
10.1016/j.foreco.2018.05.062
10.1016/j.rse.2018.10.012
10.1080/15481603.2018.1423725
10.1109/MGRS.2015.2434351
10.1016/j.rse.2005.10.022
10.3390/rs10071069
10.1016/j.rse.2017.04.016
10.1016/j.agrformet.2011.09.009
10.1016/j.rse.2012.04.001
10.1016/j.rse.2008.08.015
10.1080/01431169208904212
10.1016/j.rse.2013.01.011
10.1016/j.rse.2010.12.015
10.1016/j.rse.2016.01.021
10.1016/j.agrformet.2011.05.012
10.1016/j.rse.2006.11.025
10.1016/j.rse.2009.11.001
10.1016/j.agrformet.2014.08.007
10.1007/s00704-010-0374-8
10.1016/j.rse.2019.02.015
10.1080/01431160701241936
10.1016/j.rse.2012.08.009
10.1175/JCLI4226
10.1080/01431160802632249
10.1016/j.rse.2019.05.003
10.1109/JSTARS.2010.2051942
10.1016/j.rse.2003.11.006
10.14358/PERS.72.11.1225
10.1016/S0034-4257(02)00135-9
10.1016/j.agrformet.2015.07.005
10.1007/s00442-006-0657-z
10.1016/j.cageo.2004.05.006
10.1016/S0034-4257(98)00067-4
10.1109/TGRS.2002.802519
10.1111/j.1365-2486.2004.00890.x
10.1016/j.rse.2016.12.018
10.1016/j.rse.2012.12.017
10.1111/j.1365-2486.2009.01910.x
10.1016/j.agrformet.2012.01.013
10.1016/j.rse.2010.10.006
10.3390/rs3020203
10.1078/0176-1617-01176
10.1016/j.rse.2017.06.015
10.1016/j.rse.2013.07.025
10.1016/j.rse.2010.01.021
10.3390/rs2102369
10.1093/oxfordjournals.aob.a083148
10.3390/rs9040317
10.1016/j.rse.2019.111307
10.1016/j.agrformet.2016.11.011
10.3390/s17091982
10.1016/j.rse.2018.03.014
10.1016/j.agrformet.2016.11.193
10.1016/j.rse.2010.09.009
10.1016/j.agrformet.2018.03.010
10.1016/0034-4257(91)90016-Y
10.1016/j.rse.2016.04.022
10.1016/j.agrformet.2015.10.015
10.1111/j.1365-2486.2011.02521.x
10.1111/j.1365-2486.2006.01223.x
10.1016/j.rse.2005.03.008
10.3390/rs10040635
10.3390/rs10060890
10.1631/jzus.B1500087
10.1016/j.isprsjprs.2017.07.006
10.3390/rs6021367
10.1175/1520-0450(1994)033<0118:AMFDTS>2.0.CO;2
10.1016/j.rse.2014.03.001
10.1016/S0034-4257(96)00067-3
10.3390/rs6076680
10.1016/j.agrformet.2011.07.003
10.1016/j.rse.2011.10.014
10.1080/17538947.2013.860196
10.1029/2006JG000217
10.1525/bio.2010.60.3.3
10.1080/014311600209814
10.1016/j.rse.2016.02.018
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111511
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111511
S0034425719305309
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
41~
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
VOH
WH7
WUQ
XOL
ZCA
ZMT
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-84c05f45743c769d7c6f7b16dba7fd294e03034c591f8300f27a58c94e98f9413
ISICitedReferencesCount 618
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000509819300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Wed Oct 01 14:00:55 EDT 2025
Wed Aug 13 11:02:37 EDT 2025
Tue Nov 18 22:53:36 EST 2025
Sat Nov 29 07:29:06 EST 2025
Fri Feb 23 02:48:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phenological metrics extraction
Land surface phenology
Data smoothing
Specie-specific phenology
Remote sensing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c424t-84c05f45743c769d7c6f7b16dba7fd294e03034c591f8300f27a58c94e98f9413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2352366194
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2352441441
proquest_journals_2352366194
crossref_citationtrail_10_1016_j_rse_2019_111511
crossref_primary_10_1016_j_rse_2019_111511
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111511
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Liu, Hill, Zhang, Wang, Richardson, Hufkens, Filippa, Baldocchi, Ma, Verfaillie (bib116) 2017; 237–238
Thompson, Wehmanen (bib172) 1979; 45
Sakamoto, Gitelson, Arkebauer (bib163) 2013; 131
Cleveland, Devlin (bib26) 1988; 83
Nasahara, Nagai (bib141) 2015; 30
Migliavacca, Galvagno, Cremonese, Rossini, Meroni, Sonnentag, Cogliati, Manca, Diotri, Busetto (bib248) 2011; 10
Jin, Jönsson, Bolmgren, Langvall, Eklundh (bib90) 2017; 198
Wingate, Ogée, Cremonese, Filippa, Mizunuma, Migliavacca, Moisy, Wilkinson, Moureaux, Wohlfahrt (bib205) 2015; 12
Dash, Curran (bib28) 2004
Sonnentag, Hufkens, Teshera-Sterne, Young, Friedl, Braswell, Milliman, O Keefe, Richardson (bib166) 2012; 152
Wu, Chen, Black, Price, Kurz, Desai, Gonsamo, Jassal (bib238) 2013; 22
Zhang, Friedl, Schaaf (bib223) 2009; 30
Holben (bib75) 1986; 7
Zhou, Rover, Brown, Worstell, Howard, Wu, Gallant, Rundquist, Burke (bib235) 2019; 11
Jönsson, Eklundh (bib95) 2004; 30
He, Bo, Jong, Li, Zhu, Cheng (bib67) 2015; 36
Chen, Wang, Chen, Wang, Shen (bib24) 2018; 211
Beurs, Henebry (bib13) 2010
Gao, Hilker, Zhu, Anderson, Masek, Wang, Yang (bib53) 2015; 3
Mobasheri, Chahardoli, Farajzadeh (bib132) 2010; 12
Mckellip, Ross, Spruce, Smoot, Ryan, Gasser, Prados, Vaughan (bib125) 2010
Xue, Du, Feng (bib212) 2014; 7
Gonsamo, Chen, Price, Kurz, Wu (bib59) 2012; 117
Moura, Galvão, Hilker, Jin, Saleska, Amaral, Nelson, Lopes, Wiedeman, Prohaska (bib137) 2017; 131
Jia, Liang, Wei, Yao, Su, Jiang, Wang (bib85) 2014; 6
Jönsson, Cai, Melaas, Friedl, Eklundh (bib96) 2018; 10
Rodrigues, Marcal, Cunha (bib154) 2012
Reed, Brown, VanderZee, Loveland, Merchant, Ohlen (bib150) 1994; 5
Verstraete, Gobron, Aussedat, Robustelli, Pinty, Widlowski, Taberner (bib182) 2008; 41
Rouse (bib157) 1973; vol. 1
Sakamoto (bib160) 2018; 138
Yang, Wu, Zhang, Zeng (bib215) 2016; 16
Lovell, Graetz (bib119) 2001; 22
White, De Beurs, Didan, Inouye, Richardson, Jensen, O'Keefe, Zhang, Nemani, Van Leeuwen (bib203) 2009; 15
Yang, Shao, Li, Liu, Liu, Brian (bib246) 2017; 195
Vrieling, Leeuw, Said (bib186) 2013; 5
Boyd, Almond, Dash, Curran, Hill (bib15) 2011; 32
Melaas, Sulla-Menashe, Gray, Black, Morin, Richardson, Friedl (bib129) 2016; 186
Ji, Brown (bib84) 2017
Hou, Gao, Zheng, Xu (bib76) 2014; 35
Zhang, Friedl, Schaaf (bib222) 2006; 111
Garrity, Bohrer, Maurer, Mueller, Vogel, Curtis (bib55) 2011; 151
D'Odorico, Gonsamo, Gough, Bohrer, Morison, Wilkinson, Hanson, Gianelle, Fuentes, Buchmann (bib27) 2015; 214-215
Myneni, Keeling, Tucker, Asrar, Nemani (bib139) 1997; 386
Henebry, Beurs (bib68) 2013
Shen, Tang, Chen, Zhu, Zheng (bib165) 2011; 151
Peltoniemi, Aurela, Böttcher, Kolari, Loehr, Hokkanen, Karhu, Linkosalmi, Tanis, Metsämäki (bib147) 2018; 249
Shabanov, Zhou, Knyazikhin, Myneni (bib243) 2002; 1
Diao (bib37) 2019; 229
Boschetti, Stroppiana, Brivio, Bocchi (bib14) 2009; 30
Friend, Arneth, Kiang, Lomas, Ogee, Rodenbeckk, Running, Santaren, Sitch, Viovy (bib48) 2010; 13
Sakamoto, Yokozawa, Toritani, Shibayama, Ishitsuka, Ohno (bib161) 2005; 96
Sakamoto, Wardlow, Gitelson, Verma, Suyker, Arkebauer (bib162) 2010; 114
Hird, Mcdermid (bib72) 2009; 113
Boyte, Wylie (bib244) 2018
McMaster, White, Weiss, Baenziger, Wilhelm, Porter, Jamieson (bib126) 2008
Richardson, Wiegand (bib151) 1978
Fisher, Mustard, Vadeboncoeur (bib47) 2006; 100
Meroni, Verstraete, Rembold, Urbano, Kayitakire (bib131) 2014; 35
Townshend, Justice, Li, Gurney, Mcmanus (bib176) 1991; 35
Udelhoven (bib178) 2011; 4
Gao (bib52) 1996; 58
Atkinson, Jeganathan, Dash, Atzberger (bib7) 2012; 123
Richardson, Jenkins, Braswel, Hollinger, Ollinger, Smith (bib249) 2007; 2
Melaas, Friedl, Zhu (bib128) 2013; 132
Richardson, Hufkens, Milliman, Frolking (bib153) 2018; 8
Cao, Chen, Shen, Chen, Yang (bib21) 2018; 217
Pastick, Wylie, Wu (bib242) 2018; 10
Zhang, Goldberg, Yu (bib224) 2012; 158-159
Graham, Riordan, Yuen, Estrin, Rundel (bib60) 2010; 16
Kang, Running, Lim, Zhao, Park, Loehman (bib100) 2003; 86
Huang, Shen, Long, Wu, Shih, Zheng, Yen, Chi, Liu (bib78) 1998; 454
Martínez, Gilabert (bib123) 2009; 113
de Beurs, Henebry (bib32) 2010
Chen, Jönsson, Tamura, Gu, Matsushita, Eklundh (bib22) 2004; 91
Wu (bib206) 1993; 33
Kandasamy, Baret, Verger, Neveux (bib99) 2013; 10
Li, Roy (bib245) 2017
Park, Tateishi, Matsuoka (bib241) 1999; 38
Zheng, Wu, Zhang, Zeng (bib231) 2016; 16
Wu, Hou, Peng, Gonsamo, Xu (bib208) 2016; 216
Wang, Li, Liu, Zhong, Wu, Xia (bib197) 2017; 17
Liang, Schwartz, Fei (bib109) 2011; 115
Wu, Gonsamo, Gough, Chen, Xu (bib207) 2014; 147
Araya, Ostendorf, Lyle, Lewis (bib5) 2018; 46
Dash, Jeganathan, Atkinson (bib29) 2010; 114
Los (bib118) 1998; 36
Wulder, Loveland, Roy, Crawford, Masek, Woodcock, Allen, Anderson, Belward, Cohen, Dwyer, Erb, Gao, Griffiths, Helder, Hermosilla, Hipple, Hostert, Hughes, Huntington, Johnson, Kennedy, Kilic, Li, Lymburner, McCorkel, Pahlevan, Scambos, Schaaf, Schott, Sheng, Storey, Vermote, Vogelmann, White, Wynne, Zhu (bib210) 2019; 225
Tucker (bib177) 1979; 8
Hermance (bib69) 2007; 28
Jin, Xu (bib89) 2013; 10
Arora, Boer (bib6) 2005; 11
Tian, Fensholt, Verbesselt, Grogan, Horion, Wang (bib174) 2015; 163
Malik, Shakir, Ajmal, Khan, Khan (bib122) 2017
Beck, Jönsson, Høgda, Karlsen, Eklundh, Skidmore (bib11) 2007; 28
Hufkens, Friedl, Sonnentag, Braswell, Milliman, Richardson (bib81) 2012; 117
Claverie, Ju, Masek, Dungan, J., F. Vermote, Roger, Skakun, Justice (bib25) 2018; 219
Delbart, Beaubien, Kergoat, Toan (bib36) 2015; 160
Brown, de Beurs, Marshall (bib240) 2012; 11
Liu, Wu, Peng, Xu, Gonsamo, Jassal, Arain, Lu, Fang, Chen (bib114) 2016; 176
Tateishi, Ebata (bib170) 2004; 25
White, Pontius, Schaberg (bib204) 2014; 148
Sellers, Tucker, Collatz, Los, Justice, Dazlich, Randall (bib164) 1994; 15
Viña, Gitelson, Rundquist, Keydan, Leavitt, Schepers (bib183) 2004; 2
Delbart, Kergoat, Toan, Lhermitte, Picard (bib35) 2005; 97
Cai, Jönsson, Jin, Eklundh (bib19) 2017; 9
Gao, Anderson, Zhang, Yang, Alfieri, Kustas, Mueller, Johnson, Prueger (bib54) 2017; 188
Kobayashi, Yunus, Nagai, Sugiura, Kim, Dam, Nagano, Zona, Harazono, Bret-Harte (bib107) 2016; 177
Verhegghen, Bontemps, Defourny (bib181) 2014; 35
Watson (bib200) 1947; 11
Zhang, Qi (bib220) 2005; 160
Templ, Koch, Bolmgren, Ungersb Ck, Paul, Scheifinger, Rutishauser, Busto, Chmielewski, Hájková (bib171) 2018; 62
Houborg, Mccabe (bib77) 2018; 10
Lieth, Schwartz (bib111) 1997
Eklundh, Jönsson (bib41) 2015
Guyon, Guillot, Vitasse, Cardot, Hagolle, Delzon, Wigneron (bib62) 2011; 115
Cao, Chen, Shen, Tang (bib20) 2015; 200
Julien, Sobrino (bib97) 2010; 114
Elmore, Guinn, Minsley, Richardson (bib43) 2012; 18
Liu, Liang, Schwartz, Donnelly, Wang, Schaaf, Liu (bib113) 2015; 160
Hermance, Jacob, Bradley, Mustard (bib70) 2007; 45
Hodges (bib73) 1991
Moody, Johnson (bib133) 2001; 75
Huete, Justice, Leeuwen (bib80) 1999
Wagenseil, Samimi (bib189) 2006; 27
Antonucci, Rossi, Deslauriers, Morin, Lombardi, Marchetti, Tognetti (bib4) 2017; 233
Balzter, Gerard, George, Weedon, Grey, Combal, Bartholomé, Bartalev, Los (bib9) 2007; 20
Huete (bib79) 1988; 25
Mcmaster, Wilhelm (bib247) 1997; 4
Eklundh, J O Nsson (bib42) 2012
Hanes, Schwartz (bib66) 2011; 105
Lieth (bib110) 1974
Katharine, Jennifer, Paul (bib102) 2014; 148
Klosterman, Melaas, Wang, Martinez, Richardson (bib106) 2018; 248
Brisson, Gary, Justes, Roche, Mary, Ripoche (bib17) 2003; 18
Ganguly, Friedl, Tan, Zhang, Verma (bib51) 2010; 114
Sakamoto (bib159) 2018; 138
Zhang, Goldberg (bib219) 2011; 115
Zhang, Song, Band, Sun, Li (bib227) 2017; 191
Tong, Tian, Brandt, Liu, Zhang, Fensholt (bib175) 2019; 232
Nijland, Bolton, Coops, Stenhouse (bib144) 2016; 177
Vintrou, Bégué, Baron, Saad, Lo Seen, Traoré (bib239) 2014; 6
de Beurs, Henebry (bib30) 2004; 89
McNairn, Jiao, Pacheco, Sinha, Tan, Li (bib127) 2018; 219
Lloyd (bib117) 1990; 11
Lu, Wang, Guo, Li (bib120) 2014; 29
Moore, Brown, Keenan, Duursma, van Dijk, Beringer, Culvenor, Evans, Huete, Hutley, Maier, Restrepo-Coupe, Sonnentag, Specht, Taylor, van Gorsel, Liddell (bib134) 2016; 13
Wagenseil, Samimi (bib190) 2006; 27
Li, Zhou, Asrar, Mao, Li, Li (bib108) 2017; 23
Badhwar (bib8) 1984; 5
Rodrigues, Marcal, Cunha (bib155) 2013; 51
White, Thornton, Running (bib202) 1997; 11
Peng, Zhang, Zhang, Liu, Liu, Huete, Huang, Wang, Luo, Zhang (bib148) 2017; 132
Duarte, Teodoro, Monteiro, Cunha, Gonçalves (bib38) 2018; 148
Verger, Baret, Weiss (bib180) 2011; 115
Keenan, Gray, Friedl, Toomey, Bohrer, Hollinger, Munger, O Keefe, Schmid, Wing (bib103) 2014; 4
Heumann, Seaquist, Eklundh, Jönsson (bib71) 2007; 108
An, Zhang, Chen, Yan, Henebry (bib3) 2018; 10
Brown, Wardlow, Tadesse, Hayes, Reed (bib18) 2008; 45
Myneni (bib138) 2003
Jian, Roy (bib86) 2017; 9
Chen, Deng, Chen (bib23) 2006; 44
Nagol, Vermote, Prince (bib140) 2014; 6
Zhu, Pan, He, Wang, Mou, Liu (bib237) 2012; 50
Yan, Zhang, Yu, Guo, Hanan (bib213) 2016; 121
Motohka, Nasahara, Oguma, Tsuchida (bib135) 2010; 2
Galford, Mustard, Melillo, Gendrin, Cerri, Cerri (bib50) 2008; 112
Jeong, Schimel, Frankenberg, Drewry, Fisher, Verma, Berry, Lee, Joiner (bib83) 2017; 190
Ahl, Gower, Burrows, Shabanov, Myneni, Knyazikhin (bib2) 2006; 104
Xu, Conrad, Doktor (bib211) 2017; 9
Emelyanova, McVicar, Van Niel, Li, van Dijk (bib44) 2013; 133
Berra, Gaulton, Barr (bib12) 2019; 223
Wardlow, Egbert (bib198) 2008; 112
Roerink, Menenti, Verhoef (bib156) 2000; 21
Jiang, Huete, Didan, Miura (bib87) 2008; 112
Liu, Cao, Shen, Chen, Wang, Zhang (bib250) 2019; 11
Tan, Morisette, Wolfe, Gao, Ederer, Nightingale, Pedelty (bib169) 2011; 4
Guzman, Dash, Atkinson (bib63) 2018; 205
Jones, Hoogenboom, Porter, Boote, Batchelor, Hunt (bib91) 2003; 18
Meroni, Fasbender, Kayitakire, Pini, Rembold, Urbano, Verstraete (bib130) 2013
Zhang, Liu, Liu, Senthilnath, Wang, Moon, Henebry, Friedl, Schaaf (bib229) 2018; 216
Vrieling, Meroni, Darvishzadeh, Skidmore, Wang, Zurita-Milla, Oosterbeek, O'Connor, Paganini (bib188) 2018
Zhang, Jayavelu, Liu, Friedl, Henebry, Liu, Schaaf, Richardson, Gray (bib228) 2018; 256-257
Funk, Budde (bib49) 2009; 113
Zhou, Jia, Menenti (bib234) 2015; 163
Delbart, Kergoat, Le Toan, Lhermitte, Picard (bib34) 2005; 97
Vliet, de Groot, Bellens, Braun, Bruegger, Bruns, Clevers, Estreguil, Flechsig, Jeanneret (bib185) 2003
Wang, Huang
Eklundh (10.1016/j.rse.2019.111511_bib41) 2015
Moore (10.1016/j.rse.2019.111511_bib134) 2016; 13
Wingate (10.1016/j.rse.2019.111511_bib205) 2015; 12
Shen (10.1016/j.rse.2019.111511_bib165) 2011; 151
Mcmaster (10.1016/j.rse.2019.111511_bib247) 1997; 4
Wulder (10.1016/j.rse.2019.111511_bib210) 2019; 225
Viovy (10.1016/j.rse.2019.111511_bib184) 1992; 13
Houborg (10.1016/j.rse.2019.111511_bib77) 2018; 10
Richardson (10.1016/j.rse.2019.111511_bib151) 1978
Wang (10.1016/j.rse.2019.111511_bib194) 2012; 119
Chen (10.1016/j.rse.2019.111511_bib22) 2004; 91
Boschetti (10.1016/j.rse.2019.111511_bib14) 2009; 30
Xue (10.1016/j.rse.2019.111511_bib212) 2014; 7
Nagol (10.1016/j.rse.2019.111511_bib140) 2014; 6
Sakamoto (10.1016/j.rse.2019.111511_bib159) 2018; 138
Klosterman (10.1016/j.rse.2019.111511_bib104) 2014; 11
Moody (10.1016/j.rse.2019.111511_bib133) 2001; 75
Vrieling (10.1016/j.rse.2019.111511_bib186) 2013; 5
Wu (10.1016/j.rse.2019.111511_bib238) 2013; 22
Claverie (10.1016/j.rse.2019.111511_bib25) 2018; 219
White (10.1016/j.rse.2019.111511_bib202) 1997; 11
Funk (10.1016/j.rse.2019.111511_bib49) 2009; 113
Delbart (10.1016/j.rse.2019.111511_bib34) 2005; 97
Jönsson (10.1016/j.rse.2019.111511_bib96) 2018; 10
Wu (10.1016/j.rse.2019.111511_bib208) 2016; 216
An (10.1016/j.rse.2019.111511_bib3) 2018; 10
Ma (10.1016/j.rse.2019.111511_bib121) 2006; 37
Zhang (10.1016/j.rse.2019.111511_bib228) 2018; 256-257
Julitta (10.1016/j.rse.2019.111511_bib98) 2014; 198-199
Huete (10.1016/j.rse.2019.111511_bib80) 1999
Zhou (10.1016/j.rse.2019.111511_bib234) 2015; 163
Jin (10.1016/j.rse.2019.111511_bib90) 2017; 198
Melaas (10.1016/j.rse.2019.111511_bib128) 2013; 132
Beurs (10.1016/j.rse.2019.111511_bib13) 2010
Liu (10.1016/j.rse.2019.111511_bib116) 2017; 237–238
Katharine (10.1016/j.rse.2019.111511_bib102) 2014; 148
Cai (10.1016/j.rse.2019.111511_bib19) 2017; 9
Richardson (10.1016/j.rse.2019.111511_bib249) 2007; 2
Beck (10.1016/j.rse.2019.111511_bib11) 2007; 28
White (10.1016/j.rse.2019.111511_bib203) 2009; 15
Wardlow (10.1016/j.rse.2019.111511_bib198) 2008; 112
Tan (10.1016/j.rse.2019.111511_bib169) 2011; 4
Jiang (10.1016/j.rse.2019.111511_bib87) 2008; 112
Delbart (10.1016/j.rse.2019.111511_bib35) 2005; 97
Yan (10.1016/j.rse.2019.111511_bib213) 2016; 121
Ganguly (10.1016/j.rse.2019.111511_bib51) 2010; 114
Huete (10.1016/j.rse.2019.111511_bib79) 1988; 25
Gao (10.1016/j.rse.2019.111511_bib53) 2015; 3
Zhang (10.1016/j.rse.2019.111511_bib221) 2003; 84
Richardson (10.1016/j.rse.2019.111511_bib152) 2011
Zhang (10.1016/j.rse.2019.111511_bib223) 2009; 30
Fisher (10.1016/j.rse.2019.111511_bib47) 2006; 100
Jeong (10.1016/j.rse.2019.111511_bib83) 2017; 190
Liu (10.1016/j.rse.2019.111511_bib114) 2016; 176
Wang (10.1016/j.rse.2019.111511_bib197) 2017; 17
Lieth (10.1016/j.rse.2019.111511_bib111) 1997
Ahl (10.1016/j.rse.2019.111511_bib2) 2006; 104
de Beurs (10.1016/j.rse.2019.111511_bib30) 2004; 89
Nemani (10.1016/j.rse.2019.111511_bib143) 2009; 113
Dash (10.1016/j.rse.2019.111511_bib28) 2004
Zhang (10.1016/j.rse.2019.111511_bib227) 2017; 191
Dash (10.1016/j.rse.2019.111511_bib29) 2010; 114
Jia (10.1016/j.rse.2019.111511_bib85) 2014; 6
Araya (10.1016/j.rse.2019.111511_bib5) 2018; 46
Jin (10.1016/j.rse.2019.111511_bib89) 2013; 10
van Leeuwen (10.1016/j.rse.2019.111511_bib179) 2006; 100
Motohka (10.1016/j.rse.2019.111511_bib135) 2010; 2
Pastick (10.1016/j.rse.2019.111511_bib242) 2018; 10
Zhang (10.1016/j.rse.2019.111511_bib219) 2011; 115
Tian (10.1016/j.rse.2019.111511_bib174) 2015; 163
Lovell (10.1016/j.rse.2019.111511_bib119) 2001; 22
Vrieling (10.1016/j.rse.2019.111511_bib187) 2017; 59
Li (10.1016/j.rse.2019.111511_bib245) 2017
Hall-Beyer (10.1016/j.rse.2019.111511_bib64) 2003; 41
Meroni (10.1016/j.rse.2019.111511_bib131) 2014; 35
Pan (10.1016/j.rse.2019.111511_bib146) 2015; 34
Kang (10.1016/j.rse.2019.111511_bib100) 2003; 86
Zhu (10.1016/j.rse.2019.111511_bib237) 2012; 50
Los (10.1016/j.rse.2019.111511_bib118) 1998; 36
Meroni (10.1016/j.rse.2019.111511_bib130) 2013
Onojeghuo (10.1016/j.rse.2019.111511_bib145) 2018
Yan (10.1016/j.rse.2019.111511_bib214) 2016; 54
Jin (10.1016/j.rse.2019.111511_bib88) 2014; 152
Walther (10.1016/j.rse.2019.111511_bib193) 2015; 22
Brown (10.1016/j.rse.2019.111511_bib18) 2008; 45
Liang (10.1016/j.rse.2019.111511_bib109) 2011; 115
Hufkens (10.1016/j.rse.2019.111511_bib81) 2012; 117
Sonnentag (10.1016/j.rse.2019.111511_bib166) 2012; 152
Antonucci (10.1016/j.rse.2019.111511_bib4) 2017; 233
Liu (10.1016/j.rse.2019.111511_bib115) 2017; 194
Richardson (10.1016/j.rse.2019.111511_bib153) 2018; 8
Duarte (10.1016/j.rse.2019.111511_bib38) 2018; 148
Keenan (10.1016/j.rse.2019.111511_bib103) 2014; 4
Holben (10.1016/j.rse.2019.111511_bib75) 1986; 7
Heumann (10.1016/j.rse.2019.111511_bib71) 2007; 108
Diao (10.1016/j.rse.2019.111511_bib37) 2019; 229
Townshend (10.1016/j.rse.2019.111511_bib176) 1991; 35
Malik (10.1016/j.rse.2019.111511_bib122) 2017
Gonsamo (10.1016/j.rse.2019.111511_bib58) 2016; 182
Hanes (10.1016/j.rse.2019.111511_bib66) 2011; 105
Verstraete (10.1016/j.rse.2019.111511_bib182) 2008; 41
Fisher (10.1016/j.rse.2019.111511_bib46) 2007; 109
Park (10.1016/j.rse.2019.111511_bib241) 1999; 38
White (10.1016/j.rse.2019.111511_bib201) 2006; 104
Gitelson (10.1016/j.rse.2019.111511_bib56) 2004; 161
Badhwar (10.1016/j.rse.2019.111511_bib8) 1984; 5
Gobron (10.1016/j.rse.2019.111511_bib57) 2006; 111
Ji (10.1016/j.rse.2019.111511_bib84) 2017
Templ (10.1016/j.rse.2019.111511_bib171) 2018; 62
D'Odorico (10.1016/j.rse.2019.111511_bib27) 2015; 214-215
Cleveland (10.1016/j.rse.2019.111511_bib26) 1988; 83
Klosterman (10.1016/j.rse.2019.111511_bib105) 2014; 11
Balzter (10.1016/j.rse.2019.111511_bib9) 2007; 20
Wardlow (10.1016/j.rse.2019.111511_bib199) 2006; 72
Kariyeva (10.1016/j.rse.2019.111511_bib101) 2011; 3
Peng (10.1016/j.rse.2019.111511_bib148) 2017; 132
Yu (10.1016/j.rse.2019.111511_bib216) 2003; 87
Moura (10.1016/j.rse.2019.111511_bib137) 2017; 131
Sakamoto (10.1016/j.rse.2019.111511_bib160) 2018; 138
Gao (10.1016/j.rse.2019.111511_bib52) 1996; 58
Hou (10.1016/j.rse.2019.111511_bib76) 2014; 35
Wu (10.1016/j.rse.2019.111511_bib207) 2014; 147
Mobasheri (10.1016/j.rse.2019.111511_bib132) 2010; 12
Galford (10.1016/j.rse.2019.111511_bib50) 2008; 112
Henebry (10.1016/j.rse.2019.111511_bib68) 2013
Zeng (10.1016/j.rse.2019.111511_bib217) 2016; 181
Vliet (10.1016/j.rse.2019.111511_bib185) 2003
Viña (10.1016/j.rse.2019.111511_bib183) 2004; 2
Watson (10.1016/j.rse.2019.111511_bib200) 1947; 11
Liu (10.1016/j.rse.2019.111511_bib250) 2019; 11
WALKER (10.1016/j.rse.2019.111511_bib191) 2012; 117
Tateishi (10.1016/j.rse.2019.111511_bib170) 2004; 25
Hermance (10.1016/j.rse.2019.111511_bib69) 2007; 28
Melaas (10.1016/j.rse.2019.111511_bib129) 2016; 186
Julien (10.1016/j.rse.2019.111511_bib97) 2010; 114
Han (10.1016/j.rse.2019.111511_bib65) 2018; 427
Reed (10.1016/j.rse.2019.111511_bib150) 1994; 5
Zhang (10.1016/j.rse.2019.111511_bib222) 2006; 111
Myneni (10.1016/j.rse.2019.111511_bib138) 2003
Walker (10.1016/j.rse.2019.111511_bib192) 2014; 144
de Beurs (10.1016/j.rse.2019.111511_bib31) 2005; 11
Jones (10.1016/j.rse.2019.111511_bib92) 2011; 115
Jönsson (10.1016/j.rse.2019.111511_bib94) 2002; 40
Boyte (10.1016/j.rse.2019.111511_bib16) 2015; 8
Guan (10.1016/j.rse.2019.111511_bib61) 2014; 52
Udelhoven (10.1016/j.rse.2019.111511_bib178) 2011; 4
Brisson (10.1016/j.rse.2019.111511_bib17) 2003; 18
Wang (10.1016/j.rse.2019.111511_bib195) 2013; 138
Berra (10.1016/j.rse.2019.111511_bib12) 2019; 223
Islam (10.1016/j.rse.2019.111511_bib82) 2008; 45
Guyon (10.1016/j.rse.2019.111511_bib62) 2011; 115
Rodrigues (10.1016/j.rse.2019.111511_bib154) 2012
Klosterman (10.1016/j.rse.2019.111511_bib106) 2018; 248
Roerink (10.1016/j.rse.2019.111511_bib156) 2000; 21
Verhegghen (10.1016/j.rse.2019.111511_bib181) 2014; 35
Arora (10.1016/j.rse.2019.111511_bib6) 2005; 11
He (10.1016/j.rse.2019.111511_bib67) 2015; 36
Wu (10.1016/j.rse.2019.111511_bib206) 1993; 33
Sakamoto (10.1016/j.rse.2019.111511_bib162) 2010; 114
Beck (10.1016/j.rse.2019.111511_bib10) 2006; 99
Hodges (10.1016/j.rse.2019.111511_bib73) 1991
White (10.1016/j.rse.2019.111511_bib204) 2014; 148
Zhang (10.1016/j.rse.2019.111511_bib220) 2005; 160
Wang (10.1016/j.rse.2019.111511_bib196) 2015; 16
McNairn (10.1016/j.rse.2019.111511_bib127) 2018; 219
Rodrigues (10.1016/j.rse.2019.111511_bib155) 2013; 51
Zheng (10.1016/j.rse.2019.111511_bib231) 2016; 16
Brown (10.1016/j.rse.2019.111511_bib240) 2012; 11
Vintrou (10.1016/j.rse.2019.111511_bib239) 2014; 6
Li (10.1016/j.rse.2019.111511_bib108) 2017; 23
Wu (10.1016/j.rse.2019.111511_bib209) 2017; 233
Rouse (10.1016/j.rse.2019.111511_bib157) 1973; vol. 1
Nasahara (10.1016/j.rse.2019.111511_bib141) 2015; 30
Nijland (10.1016/j.rse.2019.111511_bib144) 2016; 177
Sakamoto (10.1016/j.rse.2019.111511_bib161) 2005; 96
Sakamoto (10.1016/j.rse.2019.111511_bib163) 2013; 131
Duchemin (10.1016/j.rse.2019.111511_bib39) 1999; 67
Yang (10.1016/j.rse.2019.111511_bib215) 2016; 16
Jian (10.1016/j.rse.2019.111511_bib86) 2017; 9
Moulin (10.1016/j.rse.2019.111511_bib136) 1997; 10
Verger (10.1016/j.rse.2019.111511_bib180) 2011; 115
Vrieling (10.1016/j.rse.2019.111511_bib188) 2018
Eilers (10.1016/j.rse.2019.111511_bib40) 2003; 75
Emelyanova (10.1016/j.rse.2019.111511_bib44) 2013; 133
Boyte (10.1016/j.rse.2019.111511_bib244) 2018
Shabanov (10.1016/j.rse.2019.111511_bib243) 2002; 1
Zhao (10.1016/j.rse.2019.111511_bib230) 2011
Guzman (10.1016/j.rse.2019.111511_bib63) 2018; 205
Lloyd (10.1016/j.rse.2019.111511_bib117) 1990; 11
Gonsamo (10.1016/j.rse.2019.111511_bib59) 2012; 117
Zhang (10.1016/j.rse.2019.111511_bib224) 2012; 158-159
Wagenseil (10.1016/j.rse.2019.111511_bib189) 2006; 27
Adole (10.1016/j.rse.2019.111511_bib1) 2016; 34
Delbart (10.1016/j.rse.2019.111511_bib36) 2015; 160
Thorpe (10.1016/j.rse.2019.111511_bib173) 2016; 7
Hird (10.1016/j.rse.2019.111511_bib72) 2009; 113
Lu (10.1016/j.rse.2019.111511_bib120) 2014; 29
Zhang (10.1016/j.rse.2019.111511_bib229) 2018; 216
Martínez (10.1016/j.rse.2019.111511_bib123) 2009; 113
Yang (10.1016/j.rse.2019.111511_bib246) 2017; 195
Migliavacca (10.1016/j.rse.2019.111511_bib248) 2011; 10
Kobayashi (10.1016/j.rse.2019.111511_bib107) 2016; 177
Tucker (10.1016/j.rse.2019.1115
References_xml – volume: 21
  start-page: 1911
  year: 2000
  end-page: 1917
  ident: bib156
  article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series
  publication-title: Int. J. Remote Sens.
– volume: 22
  start-page: 2649
  year: 2001
  end-page: 2654
  ident: bib119
  article-title: Filtering pathfinder AVHRR land NDVI data for Australia
  publication-title: Int. J. Remote Sens.
– volume: 37
  start-page: 835
  year: 2006
  end-page: 840
  ident: bib121
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Adv. Space Res.
– volume: 35
  start-page: 243
  year: 1991
  end-page: 255
  ident: bib176
  article-title: Global land cover classification by remote sensing: present capabilities and future possibilities
  publication-title: Remote Sens. Environ.
– volume: vol. 1
  start-page: 309
  year: 1973
  end-page: 317
  ident: bib157
  article-title: Monitoring Vegetation Systems in the Great Plains with ERTS
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bib25
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
– volume: 35
  start-page: 2472
  year: 2014
  end-page: 2492
  ident: bib131
  article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa
  publication-title: Int. J. Remote Sens.
– volume: 181
  start-page: 237
  year: 2016
  end-page: 250
  ident: bib217
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 105
  start-page: 37
  year: 2011
  end-page: 50
  ident: bib66
  article-title: Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature
  publication-title: Theor. Appl. Climatol.
– volume: 45
  start-page: 3264
  year: 2007
  end-page: 3276
  ident: bib70
  article-title: Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: bib145
  article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series
  publication-title: GIScience Remote Sens.
– volume: 97
  start-page: 26
  year: 2005
  end-page: 38
  ident: bib35
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
– start-page: 7
  year: 1991
  end-page: 13
  ident: bib73
  article-title: Temperature and Water Stress Effects on Phenology
– volume: 59
  start-page: 19
  year: 2017
  end-page: 30
  ident: bib187
  article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2017
  ident: bib245
  article-title: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring
  publication-title: GSCE Faculty Publications
– start-page: 517
  year: 2011
  ident: bib152
  article-title: PhenoCam: a continental-scale observatory for monitoring the phenology of terrestrial vegetation
  publication-title: Am. Geophys. Union, Fall Meet.
– volume: 115
  start-page: 2460
  year: 2011
  end-page: 2470
  ident: bib180
  article-title: A multisensor fusion approach to improve LAI time series
  publication-title: Remote Sens. Environ.
– volume: 91
  start-page: 332
  year: 2004
  end-page: 344
  ident: bib22
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter
  publication-title: Remote Sens. Environ.
– volume: 138
  start-page: 176
  year: 2018
  end-page: 192
  ident: bib159
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 111
  start-page: 2943
  year: 2006
  end-page: 2979
  ident: bib57
  article-title: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground‐based estimations
  publication-title: J. Geophys. Res. Atmos.
– volume: 4
  start-page: 361
  year: 2011
  end-page: 371
  ident: bib169
  article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– volume: 229
  start-page: 179
  year: 2019
  end-page: 192
  ident: bib37
  article-title: Complex network-based time series remote sensing model in monitoring the fall foliage transition date for peak coloration
  publication-title: Remote Sens. Environ.
– volume: 225
  start-page: 127
  year: 2019
  end-page: 147
  ident: bib210
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 3014
  year: 2010
  end-page: 3023
  ident: bib60
  article-title: Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system
  publication-title: Glob. Chang. Biol.
– volume: 219
  start-page: 196
  year: 2018
  end-page: 205
  ident: bib127
  article-title: Estimating canola phenology using synthetic aperture radar
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 902
  year: 2017
  ident: bib86
  article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
– volume: 48
  start-page: 220
  year: 1994
  end-page: 230
  ident: bib45
  article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 265
  year: 2006
  end-page: 279
  ident: bib47
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
– volume: 86
  start-page: 232
  year: 2003
  end-page: 242
  ident: bib100
  article-title: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 2230
  year: 2006
  end-page: 2238
  ident: bib23
  article-title: Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 161
  start-page: 165
  year: 2004
  end-page: 173
  ident: bib56
  article-title: Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
– volume: 10
  year: 2018
  ident: bib3
  article-title: An exploration of terrain effects on land surface phenology across the Qinghai–Tibet plateau using Landsat ETM+ and OLI data
  publication-title: Remote Sens.
– volume: 117
  start-page: 381
  year: 2012
  end-page: 393
  ident: bib191
  article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology
  publication-title: Remote Sens. Environ.
– volume: 176
  start-page: 152
  year: 2016
  end-page: 162
  ident: bib114
  article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America
  publication-title: Remote Sens. Environ.
– volume: 35
  start-page: 3316
  year: 2014
  end-page: 3330
  ident: bib76
  article-title: Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data
  publication-title: Int. J. Remote Sens.
– volume: 58
  start-page: 257
  year: 1996
  end-page: 266
  ident: bib52
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 174
  year: 2012
  end-page: 183
  ident: bib240
  article-title: Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years
  publication-title: Remote Sensing of Environment
– volume: 33
  start-page: 118
  year: 1993
  end-page: 128
  ident: bib206
  article-title: A method for determing the sensor degradation rates of NOAA AVHRR channels 1 and 2
  publication-title: Q. J. Appl. Meteorol.
– volume: 11
  year: 2019
  ident: bib250
  article-title: How does scale effect influence spring vegetation phenology estimated from satellited-derived vegetation indexes?
  publication-title: Remote sensing
– volume: 5
  start-page: 703
  year: 1994
  end-page: 714
  ident: bib150
  article-title: Measuring phenological variability from satellite imagery
  publication-title: J. Veg. Sci.
– volume: 41
  start-page: 2568
  year: 2003
  end-page: 2574
  ident: bib64
  article-title: Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 148
  start-page: 97
  year: 2014
  end-page: 107
  ident: bib204
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
– volume: 3
  start-page: 47
  year: 2015
  end-page: 60
  ident: bib53
  article-title: Fusing Landsat and MODIS data for vegetation monitoring
  publication-title: IEEE Geosci. Remote Sens. Mag.
– volume: 237–238
  start-page: 311
  year: 2017
  end-page: 325
  ident: bib116
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
– volume: 11
  start-page: 39
  year: 2005
  end-page: 59
  ident: bib6
  article-title: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models
  publication-title: Glob. Chang. Biol.
– volume: 2
  start-page: 2369
  year: 2010
  end-page: 2387
  ident: bib135
  article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology
  publication-title: Remote Sens.
– volume: 16
  start-page: 832
  year: 2015
  end-page: 844
  ident: bib196
  article-title: Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images
  publication-title: J. Zhejiang Univ. - Sci. B
– volume: 115
  start-page: 1102
  year: 2011
  end-page: 1114
  ident: bib92
  article-title: Satellite passive microwave remote sensing for monitoring global land surface phenology
  publication-title: Remote Sens. Environ.
– start-page: 495
  year: 2013
  end-page: 499
  ident: bib130
  article-title: Regional drought monitoring using phenologicallytuned biomass production estimates from SPOTVEGETATION FAPAR
– start-page: 135
  year: 2011
  end-page: 150
  ident: bib230
  article-title: Evaluation of Temporal Resolution Effect in Remote Sensing Based Crop Phenology Detection Studies
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib122
  article-title: Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan
  publication-title: Water Resour. Manag.
– volume: 138
  start-page: 176
  year: 2018
  end-page: 192
  ident: bib160
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 216
  year: 2018
  ident: bib229
  article-title: Generation and evaluation of the VIIRS land surface phenology product
  publication-title: Remote Sens. Environ.
– volume: 160
  start-page: 156
  year: 2015
  end-page: 165
  ident: bib113
  article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 16
  year: 2008
  end-page: 46
  ident: bib18
  article-title: The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation
  publication-title: GIScience Remote Sens.
– volume: 112
  start-page: 576
  year: 2008
  end-page: 587
  ident: bib50
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 115
  year: 2002
  end-page: 130
  ident: bib243
  article-title: Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
– volume: 113
  start-page: 1823
  year: 2009
  end-page: 1842
  ident: bib123
  article-title: Vegetation dynamics from NDVI time series analysis using the wavelet transform
  publication-title: Remote Sens. Environ.
– volume: 36
  start-page: 206
  year: 1998
  end-page: 213
  ident: bib118
  article-title: Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 152
  start-page: 159
  year: 2012
  end-page: 177
  ident: bib166
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agric. For. Meteorol.
– volume: 30
  start-page: 833
  year: 2004
  end-page: 845
  ident: bib95
  article-title: TIMESAT—a program for analyzing time-series of satellite sensor data ☆
  publication-title: Comput. Geosci.
– volume: 6
  start-page: 6680
  year: 2014
  end-page: 6687
  ident: bib140
  article-title: Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI data
  publication-title: Remote Sens.
– volume: 11
  start-page: 217
  year: 1997
  end-page: 234
  ident: bib202
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Glob. Biogeochem. Cycles
– volume: 9
  start-page: 1271
  year: 2017
  ident: bib19
  article-title: Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data
  publication-title: Remote Sens.
– volume: 9
  start-page: 317
  year: 2017
  ident: bib168
  article-title: Remote sensing daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards
  publication-title: Remote Sens.
– volume: 75
  start-page: 305
  year: 2001
  end-page: 323
  ident: bib133
  article-title: Land-surface phenologies from AVHRR using the discrete fourier transform
  publication-title: Remote Sens. Environ.
– volume: 96
  start-page: 366
  year: 2005
  end-page: 374
  ident: bib161
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 34
  start-page: 117
  year: 2016
  end-page: 128
  ident: bib1
  article-title: A systematic review of vegetation phenology in Africa
  publication-title: Ecol. Inf.
– volume: 454
  start-page: 903
  year: 1998
  end-page: 995
  ident: bib78
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
– volume: 191
  start-page: 145
  year: 2017
  end-page: 155
  ident: bib227
  article-title: Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening?
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 1142
  year: 2014
  end-page: 1156
  ident: bib212
  article-title: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 151
  start-page: 1741
  year: 2011
  end-page: 1752
  ident: bib55
  article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange
  publication-title: Agric. For. Meteorol.
– volume: 190
  start-page: 318
  year: 2017
  end-page: 330
  ident: bib226
  article-title: Exploration of scaling effects on coarse resolution land surface phenology
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 1805
  year: 2010
  end-page: 1816
  ident: bib51
  article-title: Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 4305
  year: 2014
  end-page: 4320
  ident: bib105
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
– volume: 75
  start-page: 3631
  year: 2003
  ident: bib40
  article-title: A perfect smoother
  publication-title: Anal. Chem.
– volume: 117
  start-page: 307
  year: 2012
  end-page: 321
  ident: bib81
  article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology
  publication-title: Remote Sens. Environ.
– volume: 132
  start-page: 185
  year: 2017
  end-page: 198
  ident: bib148
  article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 22
  start-page: 994
  year: 2013
  end-page: 1006
  ident: bib238
  article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn
  publication-title: Global Ecology and Biogeography
– year: 2003
  ident: bib185
  article-title: The European Phenology Network
– volume: 50
  start-page: 1085
  year: 2012
  end-page: 1094
  ident: bib237
  article-title: A changing-weight filter method for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 3
  start-page: 203
  year: 2011
  end-page: 246
  ident: bib101
  article-title: Environmental drivers of NDVI-based vegetation phenology in central Asia
  publication-title: Remote Sens.
– volume: 28
  start-page: 4311
  year: 2007
  end-page: 4330
  ident: bib11
  article-title: A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula
  publication-title: Int. J. Remote Sens.
– year: 1997
  ident: bib111
  publication-title: Phenology in Seasonal Climates
– volume: 198-199
  start-page: 116
  year: 2014
  end-page: 125
  ident: bib98
  article-title: Using digital camera images to analyse snowmelt and phenology of a subalpine grassland
  publication-title: Agric. For. Meteorol.
– volume: 8
  start-page: 118
  year: 2015
  end-page: 132
  ident: bib16
  article-title: The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth
  publication-title: Int. J. Digit. Earth
– volume: 23
  start-page: 2818
  year: 2017
  end-page: 2830
  ident: bib108
  article-title: Response of vegetation phenology to urbanization in the conterminous United States
  publication-title: Glob. Chang. Biol.
– volume: 84
  start-page: 471
  year: 2003
  end-page: 475
  ident: bib221
  article-title: Monitoring vegetation phenology using MODIS time-series data
  publication-title: Remote Sens. Environ.
– volume: 158-159
  start-page: 21
  year: 2012
  end-page: 29
  ident: bib224
  article-title: Prototype for monitoring and forecasting fall foliage coloration in real time from satellite data
  publication-title: Agric. For. Meteorol.
– volume: 36
  start-page: 300
  year: 2015
  end-page: 317
  ident: bib67
  article-title: Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China
  publication-title: Int. J. Remote Sens.
– volume: 256-257
  start-page: 137
  year: 2018
  end-page: 149
  ident: bib228
  article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery
  publication-title: Agric. For. Meteorol.
– volume: 46
  start-page: 45
  year: 2018
  end-page: 56
  ident: bib5
  article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery
  publication-title: Ecol. Inf.
– volume: 97
  start-page: 26
  year: 2005
  end-page: 38
  ident: bib34
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
– volume: 100
  start-page: 67
  year: 2006
  end-page: 81
  ident: bib179
  article-title: Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications
  publication-title: Remote Sens. Environ.
– volume: 108
  start-page: 385
  year: 2007
  end-page: 392
  ident: bib71
  article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 779
  year: 2005
  end-page: 790
  ident: bib31
  article-title: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects
  publication-title: Glob. Chang. Biol.
– start-page: 277
  year: 2008
  end-page: 300
  ident: bib126
  article-title: Simulating Crop Phenological Responses to Water Deficits
– volume: 22
  year: 2015
  ident: bib193
  article-title: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests
  publication-title: Glob. Chang. Biol.
– volume: 17
  start-page: 1982
  year: 2017
  ident: bib197
  article-title: Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index
  publication-title: Sensors
– volume: 18
  start-page: 235
  year: 2003
  end-page: 265
  ident: bib91
  article-title: The dssat cropping system model
  publication-title: Eur. J. Agron.
– volume: 114
  start-page: 1388
  year: 2010
  end-page: 1402
  ident: bib29
  article-title: The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 1497
  year: 2009
  end-page: 1509
  ident: bib143
  article-title: Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS)
  publication-title: Remote Sens. Environ.
– volume: 205
  start-page: 71
  year: 2018
  end-page: 84
  ident: bib63
  article-title: Remote sensing of mangrove forest phenology and its environmental drivers
  publication-title: Remote Sens. Environ.
– volume: 177
  start-page: 13
  year: 2016
  end-page: 20
  ident: bib144
  article-title: Imaging phenology; scaling from camera plots to landscapes
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 97
  year: 2014
  end-page: 107
  ident: bib102
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
– start-page: 4926
  year: 2012
  end-page: 4929
  ident: bib154
  article-title: Phenology Parameter Extraction from Time-Series of Satellite Vegetation Index Data Using Phenosat
– volume: 163
  start-page: 217
  year: 2015
  end-page: 228
  ident: bib234
  article-title: Reconstruction of global MODIS NDVI time series: performance of harmonic ANalysis of time series (HANTS)
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 618
  year: 2010
  end-page: 625
  ident: bib97
  article-title: Comparison of cloud-reconstruction methods for time series of composite NDVI data
  publication-title: Remote Sens. Environ.
– volume: 54
  start-page: 4867
  year: 2016
  end-page: 4881
  ident: bib214
  article-title: A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo basin
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 11
  start-page: 2269
  year: 1990
  end-page: 2279
  ident: bib117
  article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
  publication-title: Remote Sens.
– volume: 16
  start-page: 2099
  year: 2016
  ident: bib215
  article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products
  publication-title: Sensors
– year: 2013
  ident: bib68
  article-title: Remote Sensing of Land Surface Phenology: A Prospectus
– volume: 217
  start-page: 244
  year: 2018
  end-page: 257
  ident: bib21
  article-title: A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 5679
  year: 2018
  ident: bib153
  article-title: Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing
  publication-title: Sci. Rep.
– volume: 177
  start-page: 160
  year: 2016
  end-page: 170
  ident: bib107
  article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 309
  year: 2003
  end-page: 332
  ident: bib17
  article-title: An overview of the crop model stics
  publication-title: Eur. J. Agron.
– volume: 195
  start-page: 184
  year: 2017
  end-page: 201
  ident: bib246
  article-title: An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data
  publication-title: Remote Sensing of Environment
– volume: 41
  start-page: 1773
  year: 2008
  end-page: 1783
  ident: bib182
  article-title: An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products
  publication-title: Adv. Space Res.
– start-page: 215
  year: 2017
  end-page: 223
  ident: bib84
  article-title: Effect of NOAA Satellite Orbital Drift on AVHRR-Derived Phenological Metrics
– volume: 233
  start-page: 92
  year: 2017
  end-page: 100
  ident: bib4
  article-title: Large-scale estimation of xylem phenology in black spruce through remote sensing
  publication-title: Agric. For. Meteorol.
– volume: 115
  start-page: 382
  year: 2011
  end-page: 391
  ident: bib219
  article-title: Monitoring fall foliage coloration dynamics using time-series satellite data
  publication-title: Remote Sens. Environ.
– start-page: 100
  year: 2004
  end-page: 104
  ident: bib28
  article-title: Evaluation of the MERIS Terrestrial Chlorophyll Index
– volume: 111
  start-page: 367
  year: 2006
  end-page: 375
  ident: bib222
  article-title: Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 4
  start-page: 291
  year: 1997
  end-page: 300
  ident: bib247
  article-title: Growing degree-days: one equation, two interpretations
  publication-title: Agricultural & Forest Meteorology
– volume: 2
  start-page: 2729
  year: 2004
  end-page: 2747
  ident: bib183
  article-title: Monitoring maize ( Zea mays L.) phenology with remote sensing
  publication-title: Agron. J.
– volume: 7
  start-page: 1417
  year: 1986
  end-page: 1434
  ident: bib75
  article-title: Characteristics of maximum-value composite images from temporal AVHRR data
  publication-title: Int. J. Remote Sens.
– year: 2010
  ident: bib32
  article-title: Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology: Springer Netherlands
– volume: 131
  start-page: 215
  year: 2013
  end-page: 231
  ident: bib163
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
– volume: 138
  start-page: 90
  year: 2013
  end-page: 101
  ident: bib195
  article-title: Phenology-assisted classification of C-3 and C-4 grasses in the US Great Plains and their climate dependency with MODIS time series
  publication-title: Remote Sens. Environ.
– volume: 5
  start-page: 783
  year: 1984
  end-page: 797
  ident: bib8
  article-title: Use of Landsat-derived profile features for spring small-grains classification
  publication-title: Int. J. Remote Sens.
– volume: 32
  start-page: 8421
  year: 2011
  end-page: 8447
  ident: bib15
  article-title: Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data
  publication-title: Int. J. Remote Sens.
– volume: 144
  start-page: 85
  year: 2014
  end-page: 97
  ident: bib192
  article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 211
  year: 2015
  end-page: 223
  ident: bib141
  article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN)
  publication-title: Ecol. Res.
– year: 2010
  ident: bib13
  article-title: Spatio-Temporal Statistical Methods for Modelling Land Surface Phenology: Springer Netherlands
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bib177
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– volume: 119
  start-page: 55
  year: 2012
  end-page: 61
  ident: bib194
  article-title: Impact of sensor degradation on the MODIS NDVI time series
  publication-title: Remote Sens. Environ.
– volume: 4
  start-page: 310
  year: 2011
  end-page: 317
  ident: bib178
  article-title: TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
– year: 2018
  ident: bib244
  article-title: Near-real-time herbaceous annual cover in the sagebrush ecosystem, USA
  publication-title: U.S. Geological Survey data release
– volume: 4
  start-page: 598
  year: 2014
  end-page: 604
  ident: bib103
  article-title: Net carbon uptake has increased through warming-induced changes in temperate forest phenology
  publication-title: Nat. Clim. Chang.
– volume: 34
  start-page: 188
  year: 2015
  end-page: 197
  ident: bib146
  article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 20
  start-page: 3713
  year: 2007
  end-page: 3729
  ident: bib9
  article-title: Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and East Siberia
  publication-title: J. Clim.
– volume: 29
  start-page: 244
  year: 2014
  end-page: 255
  ident: bib120
  article-title: Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain
  publication-title: Geocarto Int.
– year: 2010
  ident: bib125
  article-title: Phenological Parameters Estimation Tool
– volume: 40
  start-page: 1824
  year: 2002
  end-page: 1832
  ident: bib94
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 38
  start-page: 36
  year: 1999
  end-page: 47
  ident: bib241
  article-title: A proposal of the Temporal Window Operation (TWO) method to remove high-frequency noises in AVHRR NDVI time series data
  publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing
– volume: 114
  start-page: 2146
  year: 2010
  end-page: 2159
  ident: bib162
  article-title: A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
– volume: 109
  start-page: 261
  year: 2007
  end-page: 273
  ident: bib46
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 1472
  year: 2012
  ident: bib59
  article-title: Land surface phenology from optical satellite measurement and CO2 eddy covariance technique
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 28
  start-page: 2801
  year: 2007
  end-page: 2819
  ident: bib69
  article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness
  publication-title: Int. J. Remote Sens.
– volume: 67
  start-page: 68
  year: 1999
  end-page: 82
  ident: bib39
  article-title: Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 4305
  year: 2014
  end-page: 4320
  ident: bib104
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
– volume: 194
  start-page: 89
  year: 2017
  end-page: 99
  ident: bib115
  article-title: Real-time and short-term predictions of spring phenology in North America from VIIRS data
  publication-title: Remote Sens. Environ.
– volume: 427
  start-page: 45
  year: 2018
  end-page: 51
  ident: bib65
  article-title: Phenological variation decreased carbon uptake in European forests during 1999–2013
  publication-title: For. Ecol. Manag.
– volume: 45
  start-page: 201
  year: 1979
  end-page: 207
  ident: bib172
  article-title: Using Landsat digital data to detect moisture stress
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 214-215
  start-page: 25
  year: 2015
  end-page: 38
  ident: bib27
  article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests
  publication-title: Agric. For. Meteorol.
– volume: 15
  start-page: 613
  year: 2009
  end-page: 615
  ident: bib203
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Glob. Change Biol.
– year: 2015
  ident: bib41
  article-title: TIMESAT: A Software Package for Time-Series Processing and Assessment of Vegetation Dynamics
– volume: 10
  start-page: 890
  year: 2018
  ident: bib77
  article-title: Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data
  publication-title: Remote Sens.
– start-page: 3
  year: 1974
  end-page: 19
  ident: bib110
  article-title: Purposes of a phenology book
  publication-title: Phenology and Seasonality Modeling
– year: 2003
  ident: bib138
  article-title: User's Guide – FPAR, LAI 8-day composite NASA MODIS land algorithm
  publication-title: Terra MODIS Land Team
– volume: 62
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib171
  article-title: Pan European Phenological database (PEP725): a single point of access for European data
  publication-title: Int. J. Biometeorol.
– volume: 16
  start-page: 2099
  year: 2016
  ident: bib231
  article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products
  publication-title: Sensors
– volume: 99
  start-page: 321
  year: 2006
  end-page: 334
  ident: bib10
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
  publication-title: Remote Sens. Environ.
– volume: 114
  start-page: 2610
  year: 2010
  end-page: 2623
  ident: bib236
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sens. Environ.
– volume: 131
  start-page: 52
  year: 2017
  end-page: 64
  ident: bib137
  article-title: Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations
  publication-title: ISPRS J. Photogrammetry Remote Sens.
– volume: 151
  start-page: 1711
  year: 2011
  end-page: 1722
  ident: bib165
  article-title: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau
  publication-title: Agric. For. Meteorol.
– volume: 87
  start-page: 42
  year: 2003
  end-page: 54
  ident: bib216
  article-title: Response of seasonal vegetation development to climatic variations in eastern central Asia
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: e1627
  year: 2016
  ident: bib173
  article-title: Introduction to the sampling designs of the national ecological observatory network terrestrial observation system
  publication-title: Ecosphere
– volume: 12
  start-page: 309
  year: 2010
  end-page: 320
  ident: bib132
  article-title: Introducing PASAVI and PANDVI methods for sugarcane physiological date estimation, using ASTER images
  publication-title: J. Agric. Sci. Technol. A
– volume: 156
  start-page: 457
  year: 2015
  end-page: 472
  ident: bib218
  article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 3455
  year: 2006
  end-page: 3471
  ident: bib189
  article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 1154
  year: 1997
  end-page: 1170
  ident: bib136
  article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements
  publication-title: J. Clim.
– volume: 54
  start-page: 481
  year: 2011
  end-page: 492
  ident: bib33
  article-title: Modeling of full and limited irrigation scenarios for corn in a semiarid environment
  publication-title: Trans. ASABE
– volume: 132
  start-page: 176
  year: 2013
  end-page: 185
  ident: bib128
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data
  publication-title: Remote Sens. Environ.
– volume: 223
  start-page: 229
  year: 2019
  end-page: 242
  ident: bib12
  article-title: Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2018
  ident: bib96
  article-title: A method for robust estimation of vegetation seasonality from Landsat and sentinel-2 time series data
  publication-title: Remote Sens.
– volume: 83
  start-page: 596
  year: 1988
  end-page: 610
  ident: bib26
  article-title: Locally weighted regression: an approach to regression analysis by local fitting
  publication-title: J. Am. Stat. Assoc.
– volume: 13
  start-page: 5085
  year: 2016
  end-page: 5102
  ident: bib134
  article-title: Reviews and syntheses: Australian vegetation phenologydigital repeat photography
  publication-title: Biogeosciences
– volume: 104
  start-page: 88
  year: 2006
  end-page: 95
  ident: bib2
  article-title: Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS
  publication-title: Remote Sens. Environ.
– volume: 233
  start-page: 171
  year: 2017
  end-page: 182
  ident: bib209
  article-title: Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites
  publication-title: Agric. For. Meteorol.
– volume: 123
  start-page: 400
  year: 2012
  end-page: 417
  ident: bib7
  article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
  publication-title: Remote Sens. Environ.
– volume: 386
  start-page: 698
  year: 1997
  end-page: 702
  ident: bib139
  article-title: Increased plant growth in the northern high latitudes from 1981 to 1991
  publication-title: Nature
– volume: 13
  start-page: 610
  year: 2010
  end-page: 633
  ident: bib48
  article-title: FLUXNET and modelling the global carbon cycle
  publication-title: Glob. Chang. Biol.
– volume: 112
  start-page: 1096
  year: 2008
  end-page: 1116
  ident: bib198
  article-title: Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 4643
  year: 2009
  end-page: 4662
  ident: bib14
  article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 942
  year: 2013
  end-page: 946
  ident: bib89
  article-title: A novel compound smoother—RMMEH to reconstruct MODIS NDVI time series
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 113
  start-page: 115
  year: 2009
  end-page: 125
  ident: bib49
  article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe
  publication-title: Remote Sens. Environ.
– volume: 52
  start-page: 1113
  year: 2014
  end-page: 1130
  ident: bib61
  article-title: Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 2440
  year: 2014
  end-page: 2471
  ident: bib181
  article-title: A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations
  publication-title: Int. J. Remote Sens.
– volume: 5
  start-page: 982
  year: 2013
  end-page: 1000
  ident: bib186
  article-title: Length of growing period over Africa: variability and trends from 30 Years of NDVI time series
  publication-title: Remote Sens.
– volume: 11
  year: 2019
  ident: bib235
  article-title: Monitoring landscape dynamics in central U.S. Grasslands with harmonized Landsat-8 and sentinel-2 time series data
  publication-title: Remote Sensing
– volume: 163
  start-page: 326
  year: 2015
  end-page: 340
  ident: bib174
  article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: bib188
  article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 2096
  year: 2013
  end-page: 2104
  ident: bib155
  article-title: Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 256–257
  start-page: 207
  year: 2018
  end-page: 219
  ident: bib149
  article-title: Scaling up spring phenology derived from remote sensing images
  publication-title: Agric. For. Meteorol.
– volume: 12
  start-page: 7979
  year: 2015
  end-page: 8034
  ident: bib205
  article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites
  publication-title: Biogeosciences
– volume: 211
  start-page: 338
  year: 2018
  end-page: 344
  ident: bib24
  article-title: The mixed pixel effect in land surface phenology: a simulation study
  publication-title: Remote Sens. Environ.
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: bib79
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 3519
  year: 1994
  end-page: 3545
  ident: bib164
  article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI
  publication-title: Int. J. Remote Sens.
– volume: 200
  start-page: 9
  year: 2015
  end-page: 20
  ident: bib20
  article-title: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data
  publication-title: Agric. For. Meteorol.
– volume: 115
  start-page: 143
  year: 2011
  end-page: 157
  ident: bib109
  article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest
  publication-title: Remote Sens. Environ.
– volume: 121
  year: 2016
  ident: bib213
  article-title: Characterizing land surface phenology and responses to rainfall in the Sahara Desert
  publication-title: J. Geophys. Res.
– volume: 13
  start-page: 1585
  year: 1992
  end-page: 1590
  ident: bib184
  article-title: The Best Index Slope Extraction ( BISE): a method for reducing noise in NDVI time-series
  publication-title: Int. J. Remote Sens.
– volume: 72
  start-page: 1225
  year: 2006
  end-page: 1234
  ident: bib199
  article-title: Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data
  publication-title: Photogram. Eng. Remote Sens.
– volume: 133
  start-page: 193
  year: 2013
  end-page: 209
  ident: bib44
  article-title: Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection
  publication-title: Remote Sens. Environ.
– volume: 182
  start-page: 13
  year: 2016
  end-page: 26
  ident: bib58
  article-title: Circumpolar vegetation dynamics product for global change study
  publication-title: Remote Sens. Environ.
– volume: 104
  start-page: 43
  year: 2006
  end-page: 49
  ident: bib201
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sens. Environ.
– volume: 160
  start-page: 273
  year: 2015
  end-page: 280
  ident: bib36
  article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 454
  year: 2008
  end-page: 470
  ident: bib82
  article-title: Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information
  publication-title: Mapp. Sci. Remote Sens.
– volume: 147
  start-page: 79
  year: 2014
  end-page: 88
  ident: bib207
  article-title: Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS
  publication-title: Remote Sens. Environ.
– volume: 160
  start-page: 501
  year: 2005
  end-page: 514
  ident: bib220
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: Eur. J. Oper. Res.
– volume: 60
  start-page: 172
  year: 2010
  end-page: 175
  ident: bib124
  article-title: Phenology and citizen science
  publication-title: Bioscience
– volume: 27
  start-page: 3455
  year: 2006
  end-page: 3471
  ident: bib190
  article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia
  publication-title: Int. J. Remote Sens.
– volume: 18
  start-page: 656
  year: 2012
  end-page: 674
  ident: bib43
  article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forests
  publication-title: Glob. Chang. Biol.
– volume: 30
  start-page: 2061
  year: 2009
  end-page: 2074
  ident: bib223
  article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data
  publication-title: Int. J. Remote Sens.
– volume: 216
  start-page: 177
  year: 2016
  end-page: 187
  ident: bib208
  article-title: Land surface phenology of China's temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity
  publication-title: Agric. For. Meteorol.
– year: 1999
  ident: bib80
  article-title: MODIS Vegetation Index (MOD13). Algorithm Theoretical Basis Document
– volume: 25
  start-page: 2287
  year: 2004
  end-page: 2300
  ident: bib170
  article-title: Analysis of phenological change patterns using 1982–2000 advanced very high resolution radiometer (AVHRR) data
  publication-title: Int. J. Remote Sens.
– volume: 249
  start-page: 335
  year: 2018
  end-page: 347
  ident: bib147
  article-title: Networked web-cameras monitor congruent seasonal development of birches with phenological field observations
  publication-title: Agric. For. Meteorol.
– volume: 89
  start-page: 497
  year: 2004
  end-page: 509
  ident: bib30
  article-title: Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 82
  year: 2018
  end-page: 94
  ident: bib38
  article-title: QPhenoMetrics: an open source software application to assess vegetation phenology metrics
  publication-title: Comput. Electron. Agric.
– volume: 115
  start-page: 615
  year: 2011
  end-page: 627
  ident: bib62
  article-title: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 3833
  year: 2008
  end-page: 3845
  ident: bib87
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
– volume: 190
  start-page: 178
  year: 2017
  end-page: 187
  ident: bib83
  article-title: Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1325
  year: 2011
  end-page: 1337
  ident: bib248
  article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO₂ uptake
  publication-title: Agricultural & Forest Meteorology
– volume: 9
  start-page: 254
  year: 2017
  ident: bib211
  article-title: Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS)
  publication-title: Remote Sens.
– volume: 232
  start-page: 111307
  year: 2019
  ident: bib175
  article-title: Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992--2012
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 323
  year: 2007
  end-page: 334
  ident: bib249
  article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest
  publication-title: Oecologia
– volume: 186
  start-page: 452
  year: 2016
  end-page: 464
  ident: bib129
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
– volume: 10
  year: 2018
  ident: bib242
  article-title: Spatiotemporal Analysis of Landsat-8 and Sentinel-2Data to Support Monitoring of Dryland Ecosystems
  publication-title: Remote sensing
– volume: 248
  start-page: 397
  year: 2018
  end-page: 407
  ident: bib106
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
– start-page: 1338
  year: 2001
  end-page: 1340
  ident: bib74
  article-title: Climatic Change Impact on Growing Season in Fennoscandia Studied by a Time Series of NOAA AVHRR NDVI Data
– volume: 10
  start-page: 4055
  year: 2013
  end-page: 4071
  ident: bib99
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations: application to MODIS LAI products
  publication-title: Biogeosciences
– volume: 152
  start-page: 512
  year: 2014
  end-page: 525
  ident: bib88
  article-title: A physically based vegetation index for improved monitoring of plant phenology
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 248
  year: 2009
  end-page: 258
  ident: bib72
  article-title: Noise reduction of NDVI time series: an empirical comparison of selected techniques
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 11518
  year: 2014
  end-page: 11532
  ident: bib85
  article-title: Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data
  publication-title: Remote Sens.
– volume: 188
  start-page: 9
  year: 2017
  end-page: 25
  ident: bib54
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
– year: 1978
  ident: bib151
  article-title: Distinguishing Vegetation from Soil Background Information
– year: 2012
  ident: bib42
  article-title: TIMESAT 3.2 with Parallel Processing-Software Manual
– volume: 11
  start-page: 41
  year: 1947
  end-page: 76
  ident: bib200
  article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years
  publication-title: Ann. Botany
– volume: 6
  start-page: 1367
  year: 2014
  end-page: 1389
  ident: bib239
  article-title: A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa
  publication-title: Remote Sensing
– volume: 198
  start-page: 203
  year: 2017
  end-page: 212
  ident: bib90
  article-title: Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 7979
  issue: 20
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib205
  article-title: Interpreting canopy development and physiology using a European phenology camera network at flux sites
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-5995-2015
– volume: 36
  start-page: 300
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib67
  article-title: Comparison of vegetation phenological metrics extracted from GIMMS NDVIg and MERIS MTCI data sets over China
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.994719
– volume: 144
  start-page: 85
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib192
  article-title: Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.007
– volume: 177
  start-page: 160
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib107
  article-title: Latitudinal gradient of spruce forest understory and tundra phenology in Alaska as observed from satellite and ground-based data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.020
– volume: 211
  start-page: 338
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib24
  article-title: The mixed pixel effect in land surface phenology: a simulation study
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.030
– volume: 148
  start-page: 97
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib102
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.017
– volume: 156
  start-page: 457
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib218
  article-title: Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.012
– volume: 117
  start-page: 1472
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib59
  article-title: Land surface phenology from optical satellite measurement and CO2 eddy covariance technique
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2012JG002070
– volume: 237–238
  start-page: 311
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib116
  article-title: Using data from Landsat, MODIS, VIIRS and PhenoCams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.02.026
– volume: 16
  start-page: 3014
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib60
  article-title: Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02164.x
– volume: 30
  start-page: 2061
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib223
  article-title: Sensitivity of vegetation phenology detection to the temporal resolution of satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802549237
– volume: 9
  start-page: 902
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib86
  article-title: A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Remote Sens.
  doi: 10.3390/rs9090902
– volume: 37
  start-page: 835
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib121
  article-title: Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2005.08.037
– volume: 99
  start-page: 321
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib10
  article-title: Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.021
– volume: 109
  start-page: 261
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib46
  article-title: Cross-scalar satellite phenology from ground, Landsat, and MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.004
– volume: 91
  start-page: 332
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib22
  article-title: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.03.014
– year: 2010
  ident: 10.1016/j.rse.2019.111511_bib13
– volume: 18
  start-page: 309
  issue: 3-4
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib17
  article-title: An overview of the crop model stics
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00110-7
– volume: 151
  start-page: 1741
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib55
  article-title: A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.07.008
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib25
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
– volume: 54
  start-page: 4867
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib214
  article-title: A comparison of tropical rainforest phenology retrieved from geostationary (SEVIRI) and polar-orbiting (MODIS) sensors across the Congo basin
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2552462
– volume: 133
  start-page: 193
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib44
  article-title: Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: a framework for algorithm selection
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.02.007
– volume: 248
  start-page: 397
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib106
  article-title: Fine-scale perspectives on landscape phenology from unmanned aerial vehicle (UAV) photography
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.015
– start-page: 277
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib126
– volume: 160
  start-page: 501
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib220
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2003.08.037
– volume: 8
  start-page: 5679
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib153
  article-title: Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-23804-6
– volume: 205
  start-page: 71
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib63
  article-title: Remote sensing of mangrove forest phenology and its environmental drivers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.11.009
– volume: 9
  start-page: 254
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib211
  article-title: Optimising phenological metrics extraction for different crop types in Germany using the moderate resolution imaging spectrometer (MODIS)
  publication-title: Remote Sens.
  doi: 10.3390/rs9030254
– start-page: 215
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib84
– volume: 190
  start-page: 178
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib83
  article-title: Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.021
– volume: 7
  start-page: 1142
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib212
  article-title: Phenology-driven land cover classification and trend analysis based on long-term remote sensing image series
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2294956
– volume: 35
  start-page: 2472
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib131
  article-title: A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.883090
– volume: 41
  start-page: 2568
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib64
  article-title: Comparison of single-year and multiyear NDVI time series principal components in cold temperate biomes
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.817274
– volume: 113
  start-page: 248
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib72
  article-title: Noise reduction of NDVI time series: an empirical comparison of selected techniques
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.003
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.rse.2019.111511_bib177
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 29
  start-page: 244
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib120
  article-title: Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2012.760004
– volume: 51
  start-page: 2096
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib155
  article-title: Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2012.2223475
– volume: 217
  start-page: 244
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib21
  article-title: A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.08.022
– volume: 160
  start-page: 156
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib113
  article-title: Evaluating the potential of MODIS satellite data to track temporal dynamics of autumn phenology in a temperate mixed forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.011
– volume: 11
  start-page: 779
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib31
  article-title: Land surface phenology and temperature variation in the International Geosphere–Biosphere Program high-latitude transects
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2005.00949.x
– volume: 200
  start-page: 9
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib20
  article-title: An improved logistic method for detecting spring vegetation phenology in grasslands from MODIS EVI time-series data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.09.009
– volume: 35
  start-page: 2440
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib181
  article-title: A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.883105
– volume: 48
  start-page: 220
  year: 1994
  ident: 10.1016/j.rse.2019.111511_bib45
  article-title: A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)90143-0
– volume: 97
  start-page: 26
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib34
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.011
– volume: 11
  start-page: 2269
  year: 1990
  ident: 10.1016/j.rse.2019.111511_bib117
  article-title: A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
  publication-title: Remote Sens.
  doi: 10.1080/01431169008955174
– volume: 186
  start-page: 452
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib129
  article-title: Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.09.014
– volume: 34
  start-page: 117
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib1
  article-title: A systematic review of vegetation phenology in Africa
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2016.05.004
– start-page: 1
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib122
  article-title: Assessment of AquaCrop model in simulating sugar beet canopy cover, biomass and root yield under different irrigation and field management practices in semi-arid regions of Pakistan
  publication-title: Water Resour. Manag.
– volume: 115
  start-page: 143
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib109
  article-title: Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.08.013
– volume: 194
  start-page: 89
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib115
  article-title: Real-time and short-term predictions of spring phenology in North America from VIIRS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.009
– volume: 104
  start-page: 88
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib2
  article-title: Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.05.003
– volume: 18
  start-page: 235
  issue: 3-4
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib91
  article-title: The dssat cropping system model
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(02)00107-7
– volume: 119
  start-page: 55
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib194
  article-title: Impact of sensor degradation on the MODIS NDVI time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.12.001
– start-page: 7
  year: 1991
  ident: 10.1016/j.rse.2019.111511_bib73
– volume: 4
  start-page: 598
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib103
  article-title: Net carbon uptake has increased through warming-induced changes in temperate forest phenology
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate2253
– volume: 50
  start-page: 1085
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib237
  article-title: A changing-weight filter method for reconstructing a high-quality NDVI time series to preserve the integrity of vegetation phenology
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2166965
– volume: 223
  start-page: 229
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib12
  article-title: Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.01.010
– volume: 16
  start-page: 2099
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib231
  article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products
  publication-title: Sensors
  doi: 10.3390/s16122099
– volume: 22
  start-page: 994
  issue: 8
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib238
  article-title: Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn
  publication-title: Global Ecology and Biogeography
  doi: 10.1111/geb.12044
– volume: 111
  start-page: 2943
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib57
  article-title: Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: methodology and results using Joint Research Center products derived from SeaWiFS against ground‐based estimations
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2005JD006511
– volume: 5
  start-page: 703
  year: 1994
  ident: 10.1016/j.rse.2019.111511_bib150
  article-title: Measuring phenological variability from satellite imagery
  publication-title: J. Veg. Sci.
  doi: 10.2307/3235884
– volume: 25
  start-page: 295
  year: 1988
  ident: 10.1016/j.rse.2019.111511_bib79
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 62
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib171
  article-title: Pan European Phenological database (PEP725): a single point of access for European data
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-018-1512-8
– volume: 10
  start-page: 4055
  issue: 6
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib99
  article-title: A comparison of methods for smoothing and gap filling time series of remote sensing observations: application to MODIS LAI products
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-4055-2013
– volume: 138
  start-page: 176
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib160
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.011
– volume: 163
  start-page: 217
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib234
  article-title: Reconstruction of global MODIS NDVI time series: performance of harmonic ANalysis of time series (HANTS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.018
– volume: 181
  start-page: 237
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib217
  article-title: A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.03.039
– volume: 52
  start-page: 1113
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib61
  article-title: Deriving vegetation phenological time and trajectory information over Africa using SEVIRI daily LAI
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2247611
– volume: 112
  start-page: 576
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib50
  article-title: Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.05.017
– volume: 117
  start-page: 307
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib81
  article-title: Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.006
– volume: 83
  start-page: 596
  year: 1988
  ident: 10.1016/j.rse.2019.111511_bib26
  article-title: Locally weighted regression: an approach to regression analysis by local fitting
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1988.10478639
– volume: 7
  start-page: 1417
  year: 1986
  ident: 10.1016/j.rse.2019.111511_bib75
  article-title: Characteristics of maximum-value composite images from temporal AVHRR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168608948945
– volume: 11
  start-page: 217
  year: 1997
  ident: 10.1016/j.rse.2019.111511_bib202
  article-title: A continental phenology model for monitoring vegetation responses to interannual climatic variability
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/97GB00330
– volume: 45
  start-page: 201
  year: 1979
  ident: 10.1016/j.rse.2019.111511_bib172
  article-title: Using Landsat digital data to detect moisture stress
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 115
  start-page: 2460
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib180
  article-title: A multisensor fusion approach to improve LAI time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.05.006
– volume: 27
  start-page: 3455
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib190
  article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600639743
– volume: 152
  start-page: 512
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib88
  article-title: A physically based vegetation index for improved monitoring of plant phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.07.010
– start-page: 517
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib152
  article-title: PhenoCam: a continental-scale observatory for monitoring the phenology of terrestrial vegetation
  publication-title: Am. Geophys. Union, Fall Meet.
– volume: 45
  start-page: 3264
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib70
  article-title: Extracting phenological signals from multiyear AVHRR NDVI time series: framework for applying high-order annual splines with roughness damping
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.903044
– volume: 216
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib229
  article-title: Generation and evaluation of the VIIRS land surface phenology product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.047
– volume: 160
  start-page: 273
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib36
  article-title: Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.012
– volume: 132
  start-page: 185
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib148
  article-title: Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.09.002
– volume: 38
  start-page: 36
  issue: 5
  year: 1999
  ident: 10.1016/j.rse.2019.111511_bib241
  article-title: A proposal of the Temporal Window Operation (TWO) method to remove high-frequency noises in AVHRR NDVI time series data
  publication-title: Journal of the Japan Society of Photogrammetry and Remote Sensing
  doi: 10.4287/jsprs.38.5_36
– volume: 1
  start-page: 115
  issue: 40
  year: 2002
  ident: 10.1016/j.rse.2019.111511_bib243
  article-title: Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994
  publication-title: IEEE Transactions on Geoscience & Remote Sensing
  doi: 10.1109/36.981354
– volume: 45
  start-page: 16
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib18
  article-title: The vegetation drought response index (VegDRI): a new integrated approach for monitoring drought stress in vegetation
  publication-title: GIScience Remote Sens.
  doi: 10.2747/1548-1603.45.1.16
– start-page: 135
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib230
– volume: 32
  start-page: 8421
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib15
  article-title: Phenology of vegetation in Southern England from Envisat MERIS terrestrial chlorophyll index (MTCI) data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.542194
– volume: 386
  start-page: 698
  year: 1997
  ident: 10.1016/j.rse.2019.111511_bib139
  article-title: Increased plant growth in the northern high latitudes from 1981 to 1991
  publication-title: Nature
  doi: 10.1038/386698a0
– year: 2003
  ident: 10.1016/j.rse.2019.111511_bib138
  article-title: User's Guide – FPAR, LAI 8-day composite NASA MODIS land algorithm
– volume: 15
  start-page: 3519
  year: 1994
  ident: 10.1016/j.rse.2019.111511_bib164
  article-title: A global 1° by 1° NDVI data set for climate studies. Part 2: the generation of global fields of terrestrial biophysical parameters from the NDVI
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954343
– volume: 46
  start-page: 45
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib5
  article-title: CropPhenology: an R package for extracting crop phenology from time series remotely sensed vegetation index imagery
  publication-title: Ecol. Inf.
  doi: 10.1016/j.ecoinf.2018.05.006
– volume: 4
  start-page: 291
  issue: 87
  year: 1997
  ident: 10.1016/j.rse.2019.111511_bib247
  article-title: Growing degree-days: one equation, two interpretations
  publication-title: Agricultural & Forest Meteorology
  doi: 10.1016/S0168-1923(97)00027-0
– volume: 148
  start-page: 82
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib38
  article-title: QPhenoMetrics: an open source software application to assess vegetation phenology metrics
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.007
– year: 2017
  ident: 10.1016/j.rse.2019.111511_bib245
  article-title: A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring
  publication-title: GSCE Faculty Publications
– volume: 10
  start-page: 1154
  year: 1997
  ident: 10.1016/j.rse.2019.111511_bib136
  article-title: Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1997)010<1154:GSAOVP>2.0.CO;2
– volume: 86
  start-page: 232
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib100
  article-title: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00103-2
– volume: 100
  start-page: 67
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib179
  article-title: Multi-sensor NDVI data continuity: uncertainties and implications for vegetation monitoring applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.002
– volume: 75
  start-page: 305
  year: 2001
  ident: 10.1016/j.rse.2019.111511_bib133
  article-title: Land-surface phenologies from AVHRR using the discrete fourier transform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00175-9
– volume: 5
  start-page: 783
  year: 1984
  ident: 10.1016/j.rse.2019.111511_bib8
  article-title: Use of Landsat-derived profile features for spring small-grains classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168408948860
– start-page: 100
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib28
– year: 2018
  ident: 10.1016/j.rse.2019.111511_bib244
  article-title: Near-real-time herbaceous annual cover in the sagebrush ecosystem, USA
  publication-title: U.S. Geological Survey data release
– year: 1999
  ident: 10.1016/j.rse.2019.111511_bib80
– volume: 256-257
  start-page: 137
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib228
  article-title: Evaluation of land surface phenology from VIIRS data using time series of PhenoCam imagery
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.03.003
– volume: 41
  start-page: 1773
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib182
  article-title: An automatic procedure to identify key vegetation phenology events using the JRC-FAPAR products
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2007.05.066
– volume: 104
  start-page: 43
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib201
  article-title: Real-time monitoring and short-term forecasting of land surface phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.014
– year: 2010
  ident: 10.1016/j.rse.2019.111511_bib125
– volume: 4
  start-page: 361
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib169
  article-title: An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2010.2075916
– volume: 249
  start-page: 335
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib147
  article-title: Networked web-cameras monitor congruent seasonal development of birches with phenological field observations
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.10.008
– volume: 6
  start-page: 11518
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib85
  article-title: Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data
  publication-title: Remote Sens.
  doi: 10.3390/rs61111518
– volume: 36
  start-page: 206
  year: 1998
  ident: 10.1016/j.rse.2019.111511_bib118
  article-title: Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.655330
– volume: 9
  start-page: 1271
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib19
  article-title: Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data
  publication-title: Remote Sens.
  doi: 10.3390/rs9121271
– volume: 10
  issue: 5
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib242
  article-title: Spatiotemporal Analysis of Landsat-8 and Sentinel-2Data to Support Monitoring of Dryland Ecosystems
  publication-title: Remote sensing
  doi: 10.3390/rs10050791
– volume: 5
  start-page: 982
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib186
  article-title: Length of growing period over Africa: variability and trends from 30 Years of NDVI time series
  publication-title: Remote Sens.
  doi: 10.3390/rs5020982
– volume: 188
  start-page: 9
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib54
  article-title: Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.11.004
– volume: 163
  start-page: 326
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib174
  article-title: Evaluating temporal consistency of long-term global NDVI datasets for trend analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.03.031
– volume: 113
  start-page: 1823
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib123
  article-title: Vegetation dynamics from NDVI time series analysis using the wavelet transform
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.04.016
– volume: 87
  start-page: 42
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib216
  article-title: Response of seasonal vegetation development to climatic variations in eastern central Asia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00144-5
– volume: 23
  start-page: 2818
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib108
  article-title: Response of vegetation phenology to urbanization in the conterminous United States
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13562
– volume: 11
  start-page: 4305
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib104
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-4305-2014
– volume: 44
  start-page: 2230
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib23
  article-title: Locally adjusted cubic-spline capping for reconstructing seasonal trajectories of a satellite-derived surface parameter
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.872089
– volume: 22
  start-page: 2649
  year: 2001
  ident: 10.1016/j.rse.2019.111511_bib119
  article-title: Filtering pathfinder AVHRR land NDVI data for Australia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160116874
– volume: 113
  start-page: 1497
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib143
  article-title: Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.017
– volume: 114
  start-page: 2146
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib162
  article-title: A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.019
– volume: 7
  start-page: e1627
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib173
  article-title: Introduction to the sampling designs of the national ecological observatory network terrestrial observation system
  publication-title: Ecosphere
  doi: 10.1002/ecs2.1627
– volume: 112
  start-page: 1096
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib198
  article-title: Large-area crop mapping using time-series MODIS 250m NDVI data: an assessment for the U.S. Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.019
– volume: 54
  start-page: 481
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib33
  article-title: Modeling of full and limited irrigation scenarios for corn in a semiarid environment
  publication-title: Trans. ASABE
  doi: 10.13031/2013.36451
– volume: 454
  start-page: 903
  year: 1998
  ident: 10.1016/j.rse.2019.111511_bib78
  article-title: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
  publication-title: Proc. Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 30
  start-page: 211
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib141
  article-title: Review: development of an in situ observation network for terrestrial ecological remote sensing: the Phenological Eyes Network (PEN)
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-014-1239-x
– volume: 28
  start-page: 2801
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib69
  article-title: Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600967128
– volume: 13
  start-page: 5085
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib134
  article-title: Reviews and syntheses: Australian vegetation phenologydigital repeat photography
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-5085-2016
– volume: vol. 1
  start-page: 309
  year: 1973
  ident: 10.1016/j.rse.2019.111511_bib157
– volume: 190
  start-page: 318
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib226
  article-title: Exploration of scaling effects on coarse resolution land surface phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.001
– year: 2012
  ident: 10.1016/j.rse.2019.111511_bib42
– volume: 75
  start-page: 3631
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib40
  article-title: A perfect smoother
  publication-title: Anal. Chem.
  doi: 10.1021/ac034173t
– volume: 114
  start-page: 1805
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib51
  article-title: Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.04.005
– volume: 112
  start-page: 3833
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib87
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.006
– volume: 35
  start-page: 3316
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib76
  article-title: Extracting grassland vegetation phenology in North China based on cumulative SPOT-VEGETATION NDVI data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.903437
– volume: 10
  start-page: 942
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib89
  article-title: A novel compound smoother—RMMEH to reconstruct MODIS NDVI time series
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2253760
– volume: 25
  start-page: 2287
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib170
  article-title: Analysis of phenological change patterns using 1982–2000 advanced very high resolution radiometer (AVHRR) data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160310001618455
– volume: 114
  start-page: 2610
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib236
  article-title: An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.032
– volume: 427
  start-page: 45
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib65
  article-title: Phenological variation decreased carbon uptake in European forests during 1999–2013
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2018.05.062
– volume: 219
  start-page: 196
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib127
  article-title: Estimating canola phenology using synthetic aperture radar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.012
– year: 2018
  ident: 10.1016/j.rse.2019.111511_bib145
  article-title: Rice crop phenology mapping at high spatial and temporal resolution using downscaled MODIS time-series
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2018.1423725
– volume: 3
  start-page: 47
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib53
  article-title: Fusing Landsat and MODIS data for vegetation monitoring
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2015.2434351
– year: 2013
  ident: 10.1016/j.rse.2019.111511_bib68
– volume: 100
  start-page: 265
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib47
  article-title: Green leaf phenology at Landsat resolution: scaling from the field to the satellite
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.10.022
– volume: 10
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib3
  article-title: An exploration of terrain effects on land surface phenology across the Qinghai–Tibet plateau using Landsat ETM+ and OLI data
  publication-title: Remote Sens.
  doi: 10.3390/rs10071069
– volume: 34
  start-page: 188
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib146
  article-title: Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 195
  start-page: 184
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib246
  article-title: An improved scheme for rice phenology estimation based on time-series multispectral HJ-1A/B and polarimetric RADARSAT-2 data
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2017.04.016
– volume: 152
  start-page: 159
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib166
  article-title: Digital repeat photography for phenological research in forest ecosystems
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.09.009
– volume: 123
  start-page: 400
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib7
  article-title: Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.001
– volume: 121
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib213
  article-title: Characterizing land surface phenology and responses to rainfall in the Sahara Desert
  publication-title: J. Geophys. Res.
– volume: 113
  start-page: 115
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib49
  article-title: Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.08.015
– volume: 13
  start-page: 1585
  year: 1992
  ident: 10.1016/j.rse.2019.111511_bib184
  article-title: The Best Index Slope Extraction ( BISE): a method for reducing noise in NDVI time-series
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169208904212
– volume: 132
  start-page: 176
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib128
  article-title: Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM + data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.01.011
– volume: 115
  start-page: 1102
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib92
  article-title: Satellite passive microwave remote sensing for monitoring global land surface phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.015
– volume: 11
  start-page: 4305
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib105
  article-title: Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery
  publication-title: Biogeosciences
  doi: 10.5194/bg-11-4305-2014
– volume: 176
  start-page: 152
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib114
  article-title: Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.01.021
– volume: 10
  start-page: 1325
  issue: 151
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib248
  article-title: Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO₂ uptake
  publication-title: Agricultural & Forest Meteorology
  doi: 10.1016/j.agrformet.2011.05.012
– start-page: 4926
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib154
– year: 2010
  ident: 10.1016/j.rse.2019.111511_bib32
– volume: 108
  start-page: 385
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib71
  article-title: AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.025
– volume: 114
  start-page: 618
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib97
  article-title: Comparison of cloud-reconstruction methods for time series of composite NDVI data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.11.001
– volume: 198-199
  start-page: 116
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib98
  article-title: Using digital camera images to analyse snowmelt and phenology of a subalpine grassland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.08.007
– volume: 105
  start-page: 37
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib66
  article-title: Modeling land surface phenology in a mixed temperate forest using MODIS measurements of leaf area index and land surface temperature
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-010-0374-8
– start-page: 495
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib130
– volume: 225
  start-page: 127
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib210
  article-title: Current status of Landsat program, science, and applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.02.015
– volume: 28
  start-page: 4311
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib11
  article-title: A ground-validated NDVI dataset for monitoring vegetation dynamics and mapping phenology in Fennoscandia and the Kola peninsula
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701241936
– volume: 11
  start-page: 174
  issue: 126
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib240
  article-title: Global phenological response to climate change in crop areas using satellite remote sensing of vegetation, humidity and temperature over 26 years
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2012.08.009
– volume: 20
  start-page: 3713
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib9
  article-title: Coupling of vegetation growing season anomalies and fire activity with hemispheric and regional-scale climate patterns in central and East Siberia
  publication-title: J. Clim.
  doi: 10.1175/JCLI4226
– volume: 30
  start-page: 4643
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib14
  article-title: Multi-year monitoring of rice crop phenology through time series analysis of MODIS images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160802632249
– volume: 229
  start-page: 179
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib37
  article-title: Complex network-based time series remote sensing model in monitoring the fall foliage transition date for peak coloration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.003
– volume: 4
  start-page: 310
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib178
  article-title: TimeStats: a software tool for the retrieval of temporal patterns from global satellite archives
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2010.2051942
– volume: 11
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib235
  article-title: Monitoring landscape dynamics in central U.S. Grasslands with harmonized Landsat-8 and sentinel-2 time series data
  publication-title: Remote Sensing
– start-page: 3
  year: 1974
  ident: 10.1016/j.rse.2019.111511_bib110
  article-title: Purposes of a phenology book
– volume: 89
  start-page: 497
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib30
  article-title: Land surface phenology, climatic variation, and institutional change: analyzing agricultural land cover change in Kazakhstan
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.006
– volume: 72
  start-page: 1225
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib199
  article-title: Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.72.11.1225
– volume: 12
  start-page: 309
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib132
  article-title: Introducing PASAVI and PANDVI methods for sugarcane physiological date estimation, using ASTER images
  publication-title: J. Agric. Sci. Technol. A
– volume: 84
  start-page: 471
  year: 2003
  ident: 10.1016/j.rse.2019.111511_bib221
  article-title: Monitoring vegetation phenology using MODIS time-series data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00135-9
– volume: 214-215
  start-page: 25
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib27
  article-title: The match and mismatch between photosynthesis and land surface phenology of deciduous forests
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.07.005
– volume: 2
  start-page: 323
  issue: 152
  year: 2007
  ident: 10.1016/j.rse.2019.111511_bib249
  article-title: Use of digital webcam images to track spring green-up in a deciduous broadleaf forest
  publication-title: Oecologia
  doi: 10.1007/s00442-006-0657-z
– volume: 30
  start-page: 833
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib95
  article-title: TIMESAT—a program for analyzing time-series of satellite sensor data ☆
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.05.006
– volume: 16
  start-page: 2099
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib215
  article-title: Crop phenology detection using high spatio-temporal resolution data fused from SPOT5 and MODIS products
  publication-title: Sensors
  doi: 10.3390/s16122099
– volume: 67
  start-page: 68
  year: 1999
  ident: 10.1016/j.rse.2019.111511_bib39
  article-title: Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00067-4
– volume: 40
  start-page: 1824
  year: 2002
  ident: 10.1016/j.rse.2019.111511_bib94
  article-title: Seasonality extraction by function fitting to time-series of satellite sensor data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.802519
– volume: 11
  start-page: 39
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib6
  article-title: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2004.00890.x
– volume: 138
  start-page: 176
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib159
  article-title: Refined shape model fitting methods for detecting various types of phenological information on major U.S. crops
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.011
– volume: 191
  start-page: 145
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib227
  article-title: Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening?
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.018
– volume: 11
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib250
  article-title: How does scale effect influence spring vegetation phenology estimated from satellited-derived vegetation indexes?
  publication-title: Remote sensing
– volume: 131
  start-page: 215
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib163
  article-title: MODIS-based corn grain yield estimation model incorporating crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.017
– volume: 15
  start-page: 613
  year: 2009
  ident: 10.1016/j.rse.2019.111511_bib203
  article-title: Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2009.01910.x
– volume: 158-159
  start-page: 21
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib224
  article-title: Prototype for monitoring and forecasting fall foliage coloration in real time from satellite data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.01.013
– volume: 115
  start-page: 615
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib62
  article-title: Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.10.006
– volume: 3
  start-page: 203
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib101
  article-title: Environmental drivers of NDVI-based vegetation phenology in central Asia
  publication-title: Remote Sens.
  doi: 10.3390/rs3020203
– volume: 161
  start-page: 165
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib56
  article-title: Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation
  publication-title: J. Plant Physiol.
  doi: 10.1078/0176-1617-01176
– year: 2003
  ident: 10.1016/j.rse.2019.111511_bib185
– volume: 59
  start-page: 19
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib187
  article-title: Spatially detailed retrievals of spring phenology from single-season high-resolution image time series
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 198
  start-page: 203
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib90
  article-title: Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.015
– volume: 138
  start-page: 90
  year: 2013
  ident: 10.1016/j.rse.2019.111511_bib195
  article-title: Phenology-assisted classification of C-3 and C-4 grasses in the US Great Plains and their climate dependency with MODIS time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.025
– volume: 114
  start-page: 1388
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib29
  article-title: The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.021
– year: 2015
  ident: 10.1016/j.rse.2019.111511_bib41
– volume: 2
  start-page: 2369
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib135
  article-title: Applicability of green-red vegetation index for remote sensing of vegetation phenology
  publication-title: Remote Sens.
  doi: 10.3390/rs2102369
– volume: 11
  start-page: 41
  year: 1947
  ident: 10.1016/j.rse.2019.111511_bib200
  article-title: Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years
  publication-title: Ann. Botany
  doi: 10.1093/oxfordjournals.aob.a083148
– volume: 9
  start-page: 317
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib168
  article-title: Remote sensing daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards
  publication-title: Remote Sens.
  doi: 10.3390/rs9040317
– year: 1978
  ident: 10.1016/j.rse.2019.111511_bib151
– volume: 22
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib193
  article-title: Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests
  publication-title: Glob. Chang. Biol.
– volume: 232
  start-page: 111307
  year: 2019
  ident: 10.1016/j.rse.2019.111511_bib175
  article-title: Trends of land surface phenology derived from passive microwave and optical remote sensing systems and associated drivers across the dry tropics 1992--2012
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111307
– volume: 2
  start-page: 2729
  year: 2004
  ident: 10.1016/j.rse.2019.111511_bib183
  article-title: Monitoring maize ( Zea mays L.) phenology with remote sensing
  publication-title: Agron. J.
– volume: 233
  start-page: 92
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib4
  article-title: Large-scale estimation of xylem phenology in black spruce through remote sensing
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.11.011
– volume: 17
  start-page: 1982
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib197
  article-title: Analysis of differences in phenology extracted from the enhanced vegetation index and the leaf area index
  publication-title: Sensors
  doi: 10.3390/s17091982
– volume: 148
  start-page: 97
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib204
  article-title: Remote sensing of spring phenology in northeastern forests: a comparison of methods, field metrics and sources of uncertainty
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.017
– year: 2018
  ident: 10.1016/j.rse.2019.111511_bib188
  article-title: Vegetation phenology from Sentinel-2 and field cameras for a Dutch barrier island
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.03.014
– volume: 97
  start-page: 26
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib35
  article-title: Determination of phenological dates in boreal regions using normalized difference water index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.011
– volume: 233
  start-page: 171
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib209
  article-title: Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2016.11.193
– volume: 115
  start-page: 382
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib219
  article-title: Monitoring fall foliage coloration dynamics using time-series satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.09.009
– volume: 256–257
  start-page: 207
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib149
  article-title: Scaling up spring phenology derived from remote sensing images
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.03.010
– volume: 35
  start-page: 243
  year: 1991
  ident: 10.1016/j.rse.2019.111511_bib176
  article-title: Global land cover classification by remote sensing: present capabilities and future possibilities
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90016-Y
– volume: 182
  start-page: 13
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib58
  article-title: Circumpolar vegetation dynamics product for global change study
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.04.022
– volume: 216
  start-page: 177
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib208
  article-title: Land surface phenology of China's temperate ecosystems over 1999–2013: spatial–temporal patterns, interaction effects, covariation with climate and implications for productivity
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2015.10.015
– volume: 18
  start-page: 656
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib43
  article-title: Landscape controls on the timing of spring, autumn, and growing season length in mid‐Atlantic forests
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02521.x
– volume: 13
  start-page: 610
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib48
  article-title: FLUXNET and modelling the global carbon cycle
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2006.01223.x
– volume: 96
  start-page: 366
  year: 2005
  ident: 10.1016/j.rse.2019.111511_bib161
  article-title: A crop phenology detection method using time-series MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.008
– volume: 10
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib96
  article-title: A method for robust estimation of vegetation seasonality from Landsat and sentinel-2 time series data
  publication-title: Remote Sens.
  doi: 10.3390/rs10040635
– volume: 10
  start-page: 890
  year: 2018
  ident: 10.1016/j.rse.2019.111511_bib77
  article-title: Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data
  publication-title: Remote Sens.
  doi: 10.3390/rs10060890
– volume: 45
  start-page: 454
  year: 2008
  ident: 10.1016/j.rse.2019.111511_bib82
  article-title: Assessment of potato phenological characteristics using MODIS-derived NDVI and LAI information
  publication-title: Mapp. Sci. Remote Sens.
– volume: 16
  start-page: 832
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib196
  article-title: Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images
  publication-title: J. Zhejiang Univ. - Sci. B
  doi: 10.1631/jzus.B1500087
– volume: 131
  start-page: 52
  year: 2017
  ident: 10.1016/j.rse.2019.111511_bib137
  article-title: Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.006
– volume: 27
  start-page: 3455
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib189
  article-title: Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600639743
– year: 1997
  ident: 10.1016/j.rse.2019.111511_bib111
– volume: 6
  start-page: 1367
  issue: 2
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib239
  article-title: A Comparative Study on Satellite- and Model-Based Crop Phenology in West Africa
  publication-title: Remote Sensing
  doi: 10.3390/rs6021367
– volume: 33
  start-page: 118
  year: 1993
  ident: 10.1016/j.rse.2019.111511_bib206
  article-title: A method for determing the sensor degradation rates of NOAA AVHRR channels 1 and 2
  publication-title: Q. J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1994)033<0118:AMFDTS>2.0.CO;2
– volume: 147
  start-page: 79
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib207
  article-title: Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.001
– volume: 58
  start-page: 257
  year: 1996
  ident: 10.1016/j.rse.2019.111511_bib52
  article-title: NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00067-3
– volume: 6
  start-page: 6680
  year: 2014
  ident: 10.1016/j.rse.2019.111511_bib140
  article-title: Quantification of impact of orbital drift on inter-annual trends in AVHRR NDVI data
  publication-title: Remote Sens.
  doi: 10.3390/rs6076680
– volume: 151
  start-page: 1711
  year: 2011
  ident: 10.1016/j.rse.2019.111511_bib165
  article-title: Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2011.07.003
– volume: 117
  start-page: 381
  year: 2012
  ident: 10.1016/j.rse.2019.111511_bib191
  article-title: Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.10.014
– volume: 8
  start-page: 118
  year: 2015
  ident: 10.1016/j.rse.2019.111511_bib16
  article-title: The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth
  publication-title: Int. J. Digit. Earth
  doi: 10.1080/17538947.2013.860196
– volume: 111
  start-page: 367
  year: 2006
  ident: 10.1016/j.rse.2019.111511_bib222
  article-title: Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): evaluation of global patterns and comparison with in situ measurements
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1029/2006JG000217
– volume: 60
  start-page: 172
  year: 2010
  ident: 10.1016/j.rse.2019.111511_bib124
  article-title: Phenology and citizen science
  publication-title: Bioscience
  doi: 10.1525/bio.2010.60.3.3
– volume: 21
  start-page: 1911
  year: 2000
  ident: 10.1016/j.rse.2019.111511_bib156
  article-title: Reconstructing cloudfree NDVI composites using Fourier analysis of time series
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600209814
– start-page: 1338
  year: 2001
  ident: 10.1016/j.rse.2019.111511_bib74
– volume: 177
  start-page: 13
  year: 2016
  ident: 10.1016/j.rse.2019.111511_bib144
  article-title: Imaging phenology; scaling from camera plots to landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.02.018
SSID ssj0015871
Score 2.7154553
Snippet Vegetation dynamics and phenology play an important role in inter-annual vegetation changes in terrestrial ecosystems and are key indicators of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111511
SubjectTerms Climate and land use
Climate and vegetation
corn
Cubesat
Data integration
Data processing
Data smoothing
Detection
Growing season
Imagery
information processing
Land cover
Land surface phenology
Land use
monitoring
Multiscale analysis
Multisensor fusion
Phenological metrics extraction
Phenology
Remote sensing
Satellite data
Satellite observation
Satellites
spatial data
Spatial discrimination
Spatial resolution
Specie-specific phenology
Terrestrial ecosystems
Time series
time series analysis
uncertainty
Vegetation
Vegetation changes
Title A review of vegetation phenological metrics extraction using time-series, multispectral satellite data
URI https://dx.doi.org/10.1016/j.rse.2019.111511
https://www.proquest.com/docview/2352366194
https://www.proquest.com/docview/2352441441
Volume 237
WOSCitedRecordID wos000509819300065&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKBmIvCAoTHQMZiSdKqsRx4vixsDJAaEJoiL5FTuKMTSWdkrYqv4C_zfVHnK5oE3tAqqIoSS2r5_Tk-vp-IPQqZkSInEQeIQH1aByGngiZylhmTAqe-HGhkf7MTk6S6ZR_6fV-t7kwqxmrqmS95pf_FWq4BmCr1NlbwO0GhQtwDqDDEWCH4z8BP95IR1nJszacUMVyOaH7qfpo5c0QlLm2zcKX2mmgWs17appGPXS4oU7GVHn8jdDlOxdyaDPanFn7VQLictioaHgTRb2RQOd809LoCix_z2bnjpTfgaMzs8P0tlZyczRqb03PrTf7SKzVacdB7bT9saw2nRawQvVdAIgV4hCYQUxt6laIiSn_YqUURDgyOvyXyhuHw8WoblSh04CPumevVtTeetO5-MM2tO0ihSFSNURqhriDdgmLOMjj7vjjZPrJbUhFCTPNF-282w1yHSq4NY_rTJytl722YE4fogd26YHHhjKPUE9WfbQ_6YCCm1bqmz66fyxtNfM-unes-z__eozKMTbswvMSd-zCm-zCll24YxfW7MIb7HqDr3ALO25hxa0n6Nv7yem7D55t1eHllNCFl9Dcj0oagT2as5gXLI9LlgVxkQlWFoRTCS-TkOYRD8ok9P2SMBElOVznScnBkNpHO9W8kk8Rln4gyoLLMssELTKZCRGGfkZYQWKSMTJAfvvrprmtY6_aqczSa1EdoNfuK5emiMtND9MWstRaoca6TIF-N33tsIU3tWrQpASWN2GsHIUD9NLdBgFXu3KikvOleQbWJPA5uM00n6G97o91iHYW9VI-R3fzFUBXv7D0_QOS7MAh
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+vegetation+phenological+metrics+extraction+using+time-series%2C+multispectral+satellite+data&rft.jtitle=Remote+sensing+of+environment&rft.au=Zeng%2C+Linglin&rft.au=Wardlow%2C+Brian+D.&rft.au=Xiang%2C+Daxiang&rft.au=Hu%2C+Shun&rft.date=2020-02-01&rft.issn=0034-4257&rft.volume=237&rft.spage=111511&rft_id=info:doi/10.1016%2Fj.rse.2019.111511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2019_111511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon