A domain decomposition method of stochastic PDEs: An iterative solution techniques using a two-level scalable preconditioner

Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 257; H. Part A; S. 298 - 317
Hauptverfasser: Subber, Waad, Sarkar, Abhijit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 15.01.2014
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in high performance computing systems and sensing technologies motivate computational simulations with extremely high resolution models with capabilities to quantify uncertainties for credible numerical predictions. A two-level domain decomposition method is reported in this investigation to devise a linear solver for the large-scale system in the Galerkin spectral stochastic finite element method (SSFEM). In particular, a two-level scalable preconditioner is introduced in order to iteratively solve the large-scale linear system in the intrusive SSFEM using an iterative substructuring based domain decomposition solver. The implementation of the algorithm involves solving a local problem on each subdomain that constructs the local part of the preconditioner and a coarse problem that propagates information globally among the subdomains. The numerical and parallel scalabilities of the two-level preconditioner are contrasted with the previously developed one-level preconditioner for two-dimensional flow through porous media and elasticity problems with spatially varying non-Gaussian material properties. A distributed implementation of the parallel algorithm is carried out using MPI and PETSc parallel libraries. The scalabilities of the algorithm are investigated in a Linux cluster.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.08.058