Inertial Sensor Algorithms to Characterize Turning in Neurological Patients With Turn Hesitations

Background: One difficulty in turning algorithm design for inertial sensors is detecting two discrete turns in the same direction, close in time. A second difficulty is under-estimation of turn angle due to short-duration hesitations by people with neurological disorders. We aimed to validate and de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 68; H. 9; S. 2615 - 2625
Hauptverfasser: Shah, Vrutangkumar V., Curtze, Carolin, Mancini, Martina, Carlson-Kuhta, Patricia, Nutt, John G., Gomez, Christopher M., El-Gohary, Mahmoud, Horak, Fay B., McNames, James
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: One difficulty in turning algorithm design for inertial sensors is detecting two discrete turns in the same direction, close in time. A second difficulty is under-estimation of turn angle due to short-duration hesitations by people with neurological disorders. We aimed to validate and determine the generalizability of a: I. Discrete Turn Algorithm for variable and sequential turns close in time and II: Merged Turn Algorithm for a single turn angle in the presence of hesitations. Methods: We validated the Discrete Turn Algorithm with motion capture in healthy controls (HC, n = 10) performing a spectrum of turn angles. Subsequently, the generalizability of the Discrete Turn Algorithm and associated, Merged Turn Algorithm were tested in people with Parkinson's disease (PD, n = 124), spinocerebellar ataxia (SCA, n = 51), and HC ( n = 125). Results: The Discrete Turn Algorithm shows improved agreement with optical motion capture and with known turn angles, compared to our previous algorithm by El-Gohary et al. The Merged Turn algorithm that merges consecutive turns in the same direction with short hesitations resulted in turn angle estimates closer to a fixed 180-degree turn angle in the PD, SCA, and HC subjects compared to our previous turn algorithm. Additional metrics were proposed to capture turn hesitations in PD and SCA. Conclusion: The Discrete Turn Algorithm may be particularly useful to characterize turns when the turn angle is unknown, i.e., during free-living conditions. The Merged Turn algorithm is recommended for clinical tasks in which the single-turn angle is known, especially for patients who hesitate while turning.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2020.3037820