Mapping recent timber harvest activity in a temperate forest using single date airborne LiDAR surveys and machine learning: lessons for conservation planning
Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by...
Saved in:
| Published in: | GIScience and remote sensing Vol. 61; no. 1 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Taylor & Francis
31.12.2024
Taylor & Francis Group |
| Subjects: | |
| ISSN: | 1548-1603, 1943-7226 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by forest management activities, which can include invasive species control, prescribed fire, partial harvests (e.g. shelterwood harvests) or overstory removals and clearcuts. Active timber management is often used to achieve forest conservation objectives, but to be used effectively, managers require knowledge of harvest frequency and extent in adjacent forests and at landscape scales. In this paper, we develop a timber harvest mapping workflow using machine learning (XGBoost algorithm) and single campaign airborne light detection and ranging (LiDAR) surveys for the state of Pennsylvania, USA. We show that harvest type (shelterwood and overstory removals) can be mapped at high accuracy (overall accuracy = 94.9%), including broad age classes defined by the number of years since harvest. Errors of omission (false negatives) were lowest for recent (<10 yr old) overstory removal harvests (1.5%) and highest for older (10-18 yr old) shelterwood harvests (34.9%), which is consistent with the expectation that older, partial timber harvests are more difficult to distinguish from untreated forests than are recent harvests. Errors of commission (false positives) were low (<6.0%) for all timber harvest types and ages. Analysis of model results across both public and private lands in three highly forested conservation regions of Pennsylvania (the Poconos, PA Wilds, and Laurel Highlands) revealed a propensity for young overstory removals along forest edges, suggesting edge effects from inaccuracies in the underlying forest mask and mixed pixels contribute to errors of commission. Acknowledging this, overstory removal and shelterwood harvests were roughly equally common across public and private lands when expressed as a fraction of all interior forests (forests >30 m from an edge). The expectation that these harvest treatments would be rarer in private forests was not supported by the model results, which is likely due to the model's inability to distinguish between alternative natural processes (weather damage, wildfire, pathogens, etc.) and forest treatment types (high-grading and firewood collection) that result in similar forest structures to the trained classes in the XGBoost model. This study provides a framework and validation for combining approachable machine-learning techniques with large-campaign LiDAR to accurately predict forest structure with application to a host of forestry, natural resource, and conservation-related problems. Future efforts that refine the model's ability to better distinguish between more complex harvest classes and natural processes would be valuable. |
|---|---|
| AbstractList | Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by forest management activities, which can include invasive species control, prescribed fire, partial harvests (e.g. shelterwood harvests) or overstory removals and clearcuts. Active timber management is often used to achieve forest conservation objectives, but to be used effectively, managers require knowledge of harvest frequency and extent in adjacent forests and at landscape scales. In this paper, we develop a timber harvest mapping workflow using machine learning (XGBoost algorithm) and single campaign airborne light detection and ranging (LiDAR) surveys for the state of Pennsylvania, USA. We show that harvest type (shelterwood and overstory removals) can be mapped at high accuracy (overall accuracy = 94.9%), including broad age classes defined by the number of years since harvest. Errors of omission (false negatives) were lowest for recent (<10 yr old) overstory removal harvests (1.5%) and highest for older (10-18 yr old) shelterwood harvests (34.9%), which is consistent with the expectation that older, partial timber harvests are more difficult to distinguish from untreated forests than are recent harvests. Errors of commission (false positives) were low (<6.0%) for all timber harvest types and ages. Analysis of model results across both public and private lands in three highly forested conservation regions of Pennsylvania (the Poconos, PA Wilds, and Laurel Highlands) revealed a propensity for young overstory removals along forest edges, suggesting edge effects from inaccuracies in the underlying forest mask and mixed pixels contribute to errors of commission. Acknowledging this, overstory removal and shelterwood harvests were roughly equally common across public and private lands when expressed as a fraction of all interior forests (forests >30 m from an edge). The expectation that these harvest treatments would be rarer in private forests was not supported by the model results, which is likely due to the model's inability to distinguish between alternative natural processes (weather damage, wildfire, pathogens, etc.) and forest treatment types (high-grading and firewood collection) that result in similar forest structures to the trained classes in the XGBoost model. This study provides a framework and validation for combining approachable machine-learning techniques with large-campaign LiDAR to accurately predict forest structure with application to a host of forestry, natural resource, and conservation-related problems. Future efforts that refine the model's ability to better distinguish between more complex harvest classes and natural processes would be valuable. |
| Author | Fitzpatrick, Matthew C. Fisher, G. Burch Elmore, Andrew J. McNeil, Darin J. Atkins, Jeff W. Larkin, Jeffery L. |
| Author_xml | – sequence: 1 givenname: G. Burch surname: Fisher fullname: Fisher, G. Burch email: gbf@ucsb.edu organization: National Socio-environmental Synthesis Center – sequence: 2 givenname: Andrew J. surname: Elmore fullname: Elmore, Andrew J. organization: National Socio-environmental Synthesis Center – sequence: 3 givenname: Matthew C. surname: Fitzpatrick fullname: Fitzpatrick, Matthew C. organization: University of Maryland Center for Environmental Science – sequence: 4 givenname: Darin J. surname: McNeil fullname: McNeil, Darin J. organization: University of Kentucky – sequence: 5 givenname: Jeff W. surname: Atkins fullname: Atkins, Jeff W. organization: USDA Forest Service – sequence: 6 givenname: Jeffery L. surname: Larkin fullname: Larkin, Jeffery L. organization: Indiana University of Pennsylvania |
| BookMark | eNqFkd1u1DAQhSNUJNrCIyD5BbL4J05iuKEqP620CAnBtTWxx62rxF7Z7qJ9GN4Vp9ve9AJu7JHPnE_jOWfNSYgBm-YtoxtGR_qOyW5kPRUbTnm34WJQTI0vmlOmOtEOnPcnta497dr0qjnL-Y5SIRmTp82fb7Db-XBDEhoMhRS_TJjILaQ95kLAFL_35UB8IEAKLjtMUJC4mFb5Pq_W9ZiR2FUAn6aYApKt_3Txg-T7yjlkAsGSBcytr8qMkEK1vK9VzjHklUZMLTDtofgYyG6GsLa8bl46mDO-ebzPm19fPv-8vGq3379eX15sW9NxUdqJShwQe-Cd6oBLqZTtpWXSjFZMyllnHDUCJPSKTUpY4SSfKA6UOifAifPm-si1Ee70LvkF0kFH8PrhIaYbDal4M6MelFW9RWCC8w7q_m3F9E4pOjohjaysD0eWSTHnhE4bXx6-VRL4WTOq19T0U2p6TU0_plbd8pn7aZr_-T4efT7UbS7wO6bZ6gKHOSaXIBiftfg34i-tbLSN |
| CitedBy_id | crossref_primary_10_1016_j_foreco_2025_123124 crossref_primary_10_1016_j_asej_2024_103258 crossref_primary_10_1016_j_foreco_2024_122442 crossref_primary_10_1016_j_srs_2025_100268 crossref_primary_10_1016_j_foreco_2025_122974 crossref_primary_10_3390_rs17050796 crossref_primary_10_1016_j_foreco_2025_122988 crossref_primary_10_3390_f16060972 crossref_primary_10_1080_15481603_2025_2555626 |
| Cites_doi | 10.1016/j.foreco.2011.09.022 10.1093/jof/90.1.33 10.1016/S0034-4257(01)00318-2 10.1093/jofore/fvx019 10.1002/wsb.266 10.1080/07038992.2019.1670051 10.5849/forsci.12-088 10.1016/j.gecco.2016.12.006 10.1080/07038992.2014.987376 10.1016/j.isprsjprs.2017.07.004 10.1093/condor/duaa052 10.1016/j.foreco.2013.12.001 10.1088/1748-9326/ab8b11 10.1353/book.83118 10.1080/07038992.2014.943392 10.1016/j.ecolind.2016.02.057 10.1093/condor/duz063 10.1111/2041-210X.12219 10.1093/jofore/fvab077 10.1007/978-94-007-1620-9_1 10.1111/j.1469-7998.2006.00158.x 10.1016/j.rse.2017.12.020 10.1093/jof/96.5.33 10.1093/jof/98.6.44 10.1080/23729333.2017.1288533 10.1029/2008jg000883 10.1017/CBO9780511810602 10.1016/j.tree.2007.10.001 10.3390/land10111116 10.1186/s40663-020-00254-z 10.3390/f9080474 10.1145/2939672.2939785 10.1093/forestry/cpab047 10.1016/j.rse.2021.112477 10.1111/2041-210X.13061 10.1016/S0378-1127(03)00246-9 10.1080/07038992.2018.1437719 10.1093/jof/105.4.179 10.1016/j.foreco.2018.09.046 10.14214/sf.9923 10.1016/j.rse.2019.03.009 10.1111/j.1523-1739.2011.01723.x 10.1016/j.foreco.2019.117742 10.1080/01431169508954436 10.5558/tfc84807-6 10.1016/j.compag.2020.105815 10.1890/09-1670.1 10.3390/f8010015 10.2307/3802048 10.1016/j.foreco.2020.118132 10.3390/rs13214282 10.5849/forsci.13-114 10.1016/j.isprsjprs.2017.11.018 10.1046/j.1365-2664.2001.00647.x 10.5751/ACE-01807-160116 10.1890/1051-0761(2002)012[0390:LEAFMD]2.0.CO;2 10.1016/j.foreco.2019.117484 10.1093/forestry/cpz048 10.1017/S0376892997000088 10.1002/rse2.24 10.1016/j.foreco.2014.06.009 10.1016/j.foreco.2022.120598 10.1016/j.rse.2017.03.035 10.1016/j.rse.2004.07.009 10.1139/cjfr-2013-0315 10.1093/forestry/cpy047 10.1038/s42256-019-0138-9 10.1016/j.compag.2017.12.034 10.1371/journal.pone.0052107 10.1016/j.rse.2009.01.003 10.1016/j.rse.2009.07.002 10.1016/j.rse.2014.02.015 10.1016/j.foreco.2023.121002 10.3390/f10060499 10.1038/s41597-022-01307-4 10.5751/ace-01193-130122 10.1016/j.rse.2020.112061 10.5849/forsci.13-153 10.1126/science.1244693 10.1016/j.rse.2022.113416 10.3390/rs61212837 10.1016/j.ecolmodel.2005.01.059 10.1093/jof/98.3.4 10.1007/s10530-013-0543-7 10.1016/S0034-4257(01)00245-0 10.5558/tfc2013-132 10.3996/nafa.79.0001 10.1080/07038992.2016.1207484 10.1111/2041-210X.12921 10.1093/forestscience/45.1.74 10.1080/09670874.2011.647836 10.1890/ES12-000352.1 10.1111/rec.13147 10.1088/1748-9326/abaad7 10.1002/ecs2.4209 10.1016/S0378-1127(01)00554-0 10.1016/j.landurbplan.2018.04.012 10.1525/cond.2012.110107 10.1097/00010694-196208000-00016 10.1093/forestscience/36.4.917 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
| Copyright_xml | – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024 |
| DBID | 0YH AAYXX CITATION DOA |
| DOI | 10.1080/15481603.2024.2379198 |
| DatabaseName | Taylor & Francis Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 1943-7226 |
| ExternalDocumentID | oai_doaj_org_article_79d96dea13224a108de706f9908f35c5 10_1080_15481603_2024_2379198 2379198 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Natural Resources Conservation Service grantid: 69-3A75-17-438 – fundername: National Aeronautics and Space Administration grantid: NNX17AG41G |
| GroupedDBID | 0YH 30N 4.4 5GY AAHBH AAJMT ABCCY ABFIM ABPEM ABTAI ACGFS ACTIO ADCVX AEISY AENEX AEYOC AIJEM AIYEW ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CS3 DGEBU DKSSO DU5 EBS E~A E~B GROUPED_DOAJ GTTXZ H13 HZ~ H~P IPNFZ KYCEM LJTGL M4Z O9- OK1 S-T SNACF TDBHL TEI TFL TFW TTHFI UT5 ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c423t-b05e7ee6a2494a25599d65d15c8d3b9fdfcf0c3a5a691b93d3f52b0e700ff3af3 |
| IEDL.DBID | 0YH |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272604700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1548-1603 |
| IngestDate | Mon Nov 10 04:32:52 EST 2025 Sat Nov 29 03:44:09 EST 2025 Tue Nov 18 20:49:14 EST 2025 Mon Oct 20 23:47:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-b05e7ee6a2494a25599d65d15c8d3b9fdfcf0c3a5a691b93d3f52b0e700ff3af3 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/15481603.2024.2379198 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_79d96dea13224a108de706f9908f35c5 crossref_primary_10_1080_15481603_2024_2379198 informaworld_taylorfrancis_310_1080_15481603_2024_2379198 crossref_citationtrail_10_1080_15481603_2024_2379198 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-31 |
| PublicationDateYYYYMMDD | 2024-12-31 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | GIScience and remote sensing |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
| References | e_1_3_4_3_1 e_1_3_4_61_1 e_1_3_4_84_1 e_1_3_4_42_1 e_1_3_4_80_1 e_1_3_4_7_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_69_1 e_1_3_4_27_1 e_1_3_4_65_1 e_1_3_4_88_1 e_1_3_4_102_1 e_1_3_4_72_1 e_1_3_4_95_1 e_1_3_4_106_1 e_1_3_4_53_1 e_1_3_4_91_1 e_1_3_4_30_1 e_1_3_4_34_1 e_1_3_4_11_1 e_1_3_4_76_1 e_1_3_4_99_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_57_1 e_1_3_4_19_1 e_1_3_4_2_1 e_1_3_4_62_1 e_1_3_4_85_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_81_1 e_1_3_4_24_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_66_1 e_1_3_4_47_1 e_1_3_4_89_1 e_1_3_4_101_1 e_1_3_4_73_1 e_1_3_4_105_1 e_1_3_4_31_1 e_1_3_4_50_1 e_1_3_4_92_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_77_1 e_1_3_4_63_1 e_1_3_4_86_1 e_1_3_4_9_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 e_1_3_4_104_1 e_1_3_4_74_1 e_1_3_4_97_1 e_1_3_4_51_1 e_1_3_4_70_1 e_1_3_4_93_1 e_1_3_4_13_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_78_1 e_1_3_4_36_1 e_1_3_4_4_1 e_1_3_4_83_1 e_1_3_4_64_1 e_1_3_4_8_1 e_1_3_4_41_1 e_1_3_4_60_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_49_1 e_1_3_4_87_1 e_1_3_4_26_1 e_1_3_4_68_1 PA-DCNR (e_1_3_4_71_1) 2020 e_1_3_4_103_1 e_1_3_4_94_1 e_1_3_4_75_1 e_1_3_4_107_1 e_1_3_4_52_1 e_1_3_4_90_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_98_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_79_1 e_1_3_4_18_1 |
| References_xml | – ident: e_1_3_4_79_1 doi: 10.1016/j.foreco.2011.09.022 – ident: e_1_3_4_68_1 doi: 10.1093/jof/90.1.33 – ident: e_1_3_4_101_1 doi: 10.1016/S0034-4257(01)00318-2 – ident: e_1_3_4_8_1 doi: 10.1093/jofore/fvx019 – ident: e_1_3_4_18_1 doi: 10.1002/wsb.266 – ident: e_1_3_4_36_1 doi: 10.1080/07038992.2019.1670051 – ident: e_1_3_4_77_1 doi: 10.5849/forsci.12-088 – ident: e_1_3_4_102_1 – ident: e_1_3_4_62_1 doi: 10.1016/j.gecco.2016.12.006 – ident: e_1_3_4_5_1 doi: 10.1080/07038992.2014.987376 – ident: e_1_3_4_87_1 doi: 10.1016/j.isprsjprs.2017.07.004 – ident: e_1_3_4_34_1 doi: 10.1093/condor/duaa052 – ident: e_1_3_4_49_1 doi: 10.1016/j.foreco.2013.12.001 – ident: e_1_3_4_104_1 doi: 10.1088/1748-9326/ab8b11 – ident: e_1_3_4_72_1 doi: 10.1353/book.83118 – ident: e_1_3_4_15_1 doi: 10.1080/07038992.2014.943392 – ident: e_1_3_4_21_1 doi: 10.1016/j.ecolind.2016.02.057 – ident: e_1_3_4_78_1 doi: 10.1093/condor/duz063 – ident: e_1_3_4_90_1 doi: 10.1111/2041-210X.12219 – ident: e_1_3_4_23_1 doi: 10.1093/jofore/fvab077 – ident: e_1_3_4_40_1 doi: 10.1007/978-94-007-1620-9_1 – ident: e_1_3_4_48_1 doi: 10.1111/j.1469-7998.2006.00158.x – ident: e_1_3_4_60_1 doi: 10.1016/j.rse.2017.12.020 – ident: e_1_3_4_29_1 doi: 10.1093/jof/96.5.33 – ident: e_1_3_4_28_1 doi: 10.1093/jof/98.6.44 – ident: e_1_3_4_3_1 doi: 10.1080/23729333.2017.1288533 – ident: e_1_3_4_10_1 doi: 10.1029/2008jg000883 – ident: e_1_3_4_37_1 doi: 10.1017/CBO9780511810602 – ident: e_1_3_4_76_1 doi: 10.1016/j.tree.2007.10.001 – ident: e_1_3_4_53_1 doi: 10.3390/land10111116 – ident: e_1_3_4_57_1 doi: 10.1186/s40663-020-00254-z – ident: e_1_3_4_44_1 doi: 10.3390/f9080474 – ident: e_1_3_4_16_1 doi: 10.1145/2939672.2939785 – ident: e_1_3_4_2_1 doi: 10.1093/forestry/cpab047 – ident: e_1_3_4_20_1 doi: 10.1016/j.rse.2021.112477 – ident: e_1_3_4_4_1 doi: 10.1111/2041-210X.13061 – ident: e_1_3_4_13_1 doi: 10.1016/S0378-1127(03)00246-9 – ident: e_1_3_4_45_1 doi: 10.1080/07038992.2018.1437719 – ident: e_1_3_4_74_1 doi: 10.1093/jof/105.4.179 – ident: e_1_3_4_41_1 doi: 10.1016/j.foreco.2018.09.046 – ident: e_1_3_4_47_1 doi: 10.14214/sf.9923 – ident: e_1_3_4_107_1 doi: 10.1016/j.rse.2019.03.009 – ident: e_1_3_4_86_1 doi: 10.1111/j.1523-1739.2011.01723.x – ident: e_1_3_4_95_1 doi: 10.1016/j.foreco.2019.117742 – ident: e_1_3_4_19_1 doi: 10.1080/01431169508954436 – ident: e_1_3_4_103_1 doi: 10.5558/tfc84807-6 – ident: e_1_3_4_22_1 doi: 10.1016/j.compag.2020.105815 – ident: e_1_3_4_39_1 doi: 10.1890/09-1670.1 – ident: e_1_3_4_46_1 doi: 10.3390/f8010015 – ident: e_1_3_4_61_1 doi: 10.2307/3802048 – ident: e_1_3_4_92_1 doi: 10.1016/j.foreco.2020.118132 – ident: e_1_3_4_106_1 doi: 10.3390/rs13214282 – ident: e_1_3_4_26_1 doi: 10.5849/forsci.13-114 – ident: e_1_3_4_32_1 doi: 10.1016/j.isprsjprs.2017.11.018 – ident: e_1_3_4_58_1 doi: 10.1046/j.1365-2664.2001.00647.x – ident: e_1_3_4_35_1 doi: 10.5751/ACE-01807-160116 – ident: e_1_3_4_11_1 doi: 10.1890/1051-0761(2002)012[0390:LEAFMD]2.0.CO;2 – ident: e_1_3_4_9_1 doi: 10.1016/j.foreco.2019.117484 – ident: e_1_3_4_84_1 doi: 10.1093/forestry/cpz048 – ident: e_1_3_4_33_1 doi: 10.1017/S0376892997000088 – ident: e_1_3_4_73_1 doi: 10.1002/rse2.24 – ident: e_1_3_4_42_1 doi: 10.1016/j.foreco.2014.06.009 – ident: e_1_3_4_24_1 doi: 10.1016/j.foreco.2022.120598 – ident: e_1_3_4_98_1 doi: 10.1016/j.rse.2017.03.035 – ident: e_1_3_4_105_1 doi: 10.1016/j.rse.2004.07.009 – ident: e_1_3_4_27_1 doi: 10.1139/cjfr-2013-0315 – ident: e_1_3_4_66_1 doi: 10.1093/forestry/cpy047 – ident: e_1_3_4_55_1 doi: 10.1038/s42256-019-0138-9 – ident: e_1_3_4_75_1 doi: 10.1016/j.compag.2017.12.034 – ident: e_1_3_4_12_1 doi: 10.1371/journal.pone.0052107 – ident: e_1_3_4_30_1 doi: 10.1016/j.rse.2009.01.003 – ident: e_1_3_4_59_1 doi: 10.1016/j.rse.2009.07.002 – ident: e_1_3_4_69_1 doi: 10.1016/j.rse.2014.02.015 – ident: e_1_3_4_63_1 doi: 10.1016/j.foreco.2023.121002 – ident: e_1_3_4_56_1 doi: 10.3390/f10060499 – ident: e_1_3_4_14_1 doi: 10.1038/s41597-022-01307-4 – volume-title: Pennsylvania Forest Action Plan year: 2020 ident: e_1_3_4_71_1 – ident: e_1_3_4_64_1 doi: 10.5751/ace-01193-130122 – ident: e_1_3_4_80_1 doi: 10.1016/j.rse.2020.112061 – ident: e_1_3_4_89_1 doi: 10.5849/forsci.13-153 – ident: e_1_3_4_43_1 doi: 10.1126/science.1244693 – ident: e_1_3_4_91_1 doi: 10.1016/j.rse.2022.113416 – ident: e_1_3_4_70_1 doi: 10.3390/rs61212837 – ident: e_1_3_4_7_1 doi: 10.1016/j.ecolmodel.2005.01.059 – ident: e_1_3_4_83_1 doi: 10.1093/jof/98.3.4 – ident: e_1_3_4_50_1 doi: 10.1007/s10530-013-0543-7 – ident: e_1_3_4_81_1 doi: 10.1016/S0034-4257(01)00245-0 – ident: e_1_3_4_99_1 doi: 10.5558/tfc2013-132 – ident: e_1_3_4_85_1 doi: 10.3996/nafa.79.0001 – ident: e_1_3_4_97_1 doi: 10.1080/07038992.2016.1207484 – ident: e_1_3_4_17_1 doi: 10.1111/2041-210X.12921 – ident: e_1_3_4_25_1 doi: 10.1093/forestscience/45.1.74 – ident: e_1_3_4_93_1 doi: 10.1080/09670874.2011.647836 – ident: e_1_3_4_31_1 doi: 10.1890/ES12-000352.1 – ident: e_1_3_4_65_1 doi: 10.1111/rec.13147 – ident: e_1_3_4_38_1 doi: 10.1088/1748-9326/abaad7 – ident: e_1_3_4_52_1 doi: 10.1002/ecs2.4209 – ident: e_1_3_4_51_1 doi: 10.1016/S0378-1127(01)00554-0 – ident: e_1_3_4_94_1 doi: 10.1016/j.landurbplan.2018.04.012 – ident: e_1_3_4_88_1 doi: 10.1525/cond.2012.110107 – ident: e_1_3_4_6_1 doi: 10.1097/00010694-196208000-00016 – ident: e_1_3_4_54_1 doi: 10.1093/forestscience/36.4.917 |
| SSID | ssj0035115 |
| Score | 2.3957553 |
| Snippet | Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how... |
| SourceID | doaj crossref informaworld |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| SubjectTerms | Forest structure overstory removal private land public land shelterwood XGBoost |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NBL6ZNsX8yh9OZEtizL6m3bJPSQhlJayM3ouTUkTlg7hfyY_tfOyNqw6aG59GKEbInBM9ZoxqPvY-ydlcFXxtYFuhJV1LVK66Av0BVZURlVNW06KHyiTk_bszP9dYvqi2rCZnjg-cUdKO1144OhqKk2JW99ULyJuIi2UUiX0Eu50ptgal6D6e-YTEipNcZIDRebszstP6A-6sLYsKr3K6E0xt13vFIC7_8LunTL6Rw_Zo_ybhGWs5RP2IMwPGV7y5Hy15cXN_AeUntOT4zP2O8vhvAWVoDrGHoTmHri-4CfZk1oGkCHGIgrAvoBDBAqFUEqB0AB6DbVwK-ALucBKBMApl-jjQwBTvrD5TcYr3GemxHM4OEiVWEGyLQTqw_YQlUPI80Gjoq0c7oXrjIx0nP24_jo-6fPRSZgKBzusqbCchlUCI3BGK02CZzMN9KX0rVeWB19dJE7YaRpdGm18CLKynJUEI9RmChesJ3hcgh7DGy0VpVlU3Gn60pZWzklcbTHHYaUUS1YvVFA5zI6OZFknHdlBjHd6K0jvXVZbwu2fzvsaobnuG_AR9Lu7cOErp060Oa6bHPdfTa3YHrbNropJVfizITSiX8K8PJ_CPCKPaQ5Z8DJ12xnWl-HN2zX_Zr6cf02fQp_AE9OCag priority: 102 providerName: Directory of Open Access Journals |
| Title | Mapping recent timber harvest activity in a temperate forest using single date airborne LiDAR surveys and machine learning: lessons for conservation planning |
| URI | https://www.tandfonline.com/doi/abs/10.1080/15481603.2024.2379198 https://doaj.org/article/79d96dea13224a108de706f9908f35c5 |
| Volume | 61 |
| WOSCitedRecordID | wos001272604700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1943-7226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035115 issn: 1548-1603 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1943-7226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035115 issn: 1548-1603 databaseCode: TFW dateStart: 20040601 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis – providerCode: PRVAWR databaseName: Taylor & Francis Open Access customDbUrl: eissn: 1943-7226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035115 issn: 1548-1603 databaseCode: 0YH dateStart: 20221201 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagcODCG3V5VHNA3FKydhxvuC2PVQ-lQqiIcor8XCK12SpJkfpj-l874zhVQQIOcImcx4xseex5ZPwNYy-N9I5rU2SoSlRWFCrugy5DVWQE14qXi3hQeF8dHCyOjqpPKZuwT2mV5EOHESgi7tW0uLXpp4y412RlU3Vk9O54scuFqtBzvslucXRNyP_Kv-1NmzH9JpMRMrVAZwlppkM8v2Pzk3qKKP6_YJhe0z6re_-h3_fZ3WR6wnKUlQfshm8fsu1lT8Hwzck5vILYHmMd_SN28VETeMMacFNE1QRDQ8VD4LvuCJoD6EQEFZ6ApgUNBHFF-MwecBD0mhLq10CXYw8UVgDddChwrYf95v3yM_RnyOe8BxwOnMSUTg-phsX6DbZQbtqeuIGljO8UO4bTVGXpMfuy-nD4bi9L1RwyiybbkJlceuV9qdHhK3REOnOldHNpF06YKrhgQ26Flrqs5qYSTgTJTe5VnocgdBBP2Fa7af02AxOMUfN5yXNbFVwZw62SSO3QXJEyqBkrpkmsbYI6p4obx_U8IaJOU1HTVNRpKmZs94rsdMT6-BvBW5KQq48Jqjs-2HTrOq38WlWuKp3X5PYXGpk5HFIZ0ApYBCGtnLHqunzVQ4zUhLGsSi3-2IGn_0D7jN2h2xG08jnbGroz_4Ldtj-Gpu924iraiREKvB6uvl4CmyMcjQ |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGFN-pCC3NA3FKSOI433LaUVRHbPaBF9Bb5uURqs1WSIvXH8F-ZcZJqQQIOcImiOOPY8tjzyMw3jL3SwtlU6SxCUSKjLJPhHLQRiiLNUyXTfBoShRdyuZyenhbbuTAUVkk2tO-BIsJZTZubnNFjSNwbUrOpPDKad2l2kHJZoOl8k90S-D3Cz1_Nv4ynMf0nEwEzNUNrCWnGLJ7fdfOTfAow_r-AmG6Jn_n9_zHwB-zeoHzCrOeWh-yGqx-x3VlL7vDN-RW8hnDfezvax-z7iSL4hjXgsYjCCbqKyofAV9UQOAdQTgSVnoCqBgUEckUIzQ5wFtRMIfVroMuZA3IsgKoaZLnawaI6mn2C9hL7uWoB5wPnIajTwVDFYv0W75Bz6pZ6A0Mx34P3GC6GOktP2Of5-9W742io5xAZVNq6SMfCSedyhSZfpgLWmc2FTYSZWq4Lb73xseFKqLxIdMEt9yLVsZNx7D1Xnj9lO_WmdrsMtNdaJkmexqbIUql1aqRAaosKixBeTlg2rmJpBrBzqrlxViYDJuq4FCUtRTksxYQdXJNd9GgffyM4JBa5fpnAusODTbMuh71fysIWuXWKDP9MYWcWp5R71AOmngsjJqzYZrCyC74a3xdWKfkfB_DsH2hfsjvHq5NFufiw_Pic3aWmHsJyj-10zaXbZ7fNt65qmxdhS_0AmKwesA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMSFd9XlOQfELSWJ43jDbaGsQCyrChXRW-TnEqnNrpIUqT-G_8qM460KEnCAS2TFGcvWjD2PjL9h7LkWzuZKFwmqEpkUhQznoE1QFWmeK5mX03BReCGXy-nxcXUYswn7mFZJPrQfgSLCWU2be2P9NiPuJVnZVB0Zvbu82M-5rNBzvsquoelckpAfzb9sD2P6TSYCZGqBzhLSbC_x_G6Yn9RTQPH_BcP0kvaZ3_4P877DbkXTE2ajrNxlV1x7j-3NegqGr0_P4QWE9hjr6O-z7x8VgTesAA9FVE0wNFQ8BL6qjqA5gG5EUOEJaFpQQBBXhM_sABdB3ZRQvwJ6nDigsAKopkOBax0smoPZJ-jPcJzzHnA5cBpSOh3EGharV9hCuWl7Gg0MZXzH2DFsYpWlB-zz_O3Rm3dJrOaQGDTZhkSnwknnSoUOX6EC0pkthc2EmVquK2-98anhSqiyynTFLfci16mTaeo9V57vsp123bo9BtprLbOszFNTFbnUOjdSILVFc0UILyes2DKxNhHqnCpunNRZRETdsqImVtSRFRO2f0G2GbE-_kbwmiTk4mOC6g4v1t2qjju_lpWtSusUuf2FwsEsLqn0aAVMPRdGTFh1Wb7qIURq_FhWpeZ_nMDDf6B9xm4cHszrxfvlh0fsJvWM-JWP2c7Qnbkn7Lr5NjR99zRsqB8gLR1i |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+recent+timber+harvest+activity+in+a+temperate+forest+using+single+date+airborne+LiDAR+surveys+and+machine+learning%3A+lessons+for+conservation+planning&rft.jtitle=GIScience+and+remote+sensing&rft.au=Fisher%2C+G.+Burch&rft.au=Elmore%2C+Andrew+J.&rft.au=Fitzpatrick%2C+Matthew+C.&rft.au=McNeil%2C+Darin+J.&rft.date=2024-12-31&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=61&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2024.2379198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15481603_2024_2379198 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon |