Mapping recent timber harvest activity in a temperate forest using single date airborne LiDAR surveys and machine learning: lessons for conservation planning

Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GIScience and remote sensing Jg. 61; H. 1
Hauptverfasser: Fisher, G. Burch, Elmore, Andrew J., Fitzpatrick, Matthew C., McNeil, Darin J., Atkins, Jeff W., Larkin, Jeffery L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Taylor & Francis 31.12.2024
Taylor & Francis Group
Schlagworte:
ISSN:1548-1603, 1943-7226
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by forest management activities, which can include invasive species control, prescribed fire, partial harvests (e.g. shelterwood harvests) or overstory removals and clearcuts. Active timber management is often used to achieve forest conservation objectives, but to be used effectively, managers require knowledge of harvest frequency and extent in adjacent forests and at landscape scales. In this paper, we develop a timber harvest mapping workflow using machine learning (XGBoost algorithm) and single campaign airborne light detection and ranging (LiDAR) surveys for the state of Pennsylvania, USA. We show that harvest type (shelterwood and overstory removals) can be mapped at high accuracy (overall accuracy = 94.9%), including broad age classes defined by the number of years since harvest. Errors of omission (false negatives) were lowest for recent (<10 yr old) overstory removal harvests (1.5%) and highest for older (10-18 yr old) shelterwood harvests (34.9%), which is consistent with the expectation that older, partial timber harvests are more difficult to distinguish from untreated forests than are recent harvests. Errors of commission (false positives) were low (<6.0%) for all timber harvest types and ages. Analysis of model results across both public and private lands in three highly forested conservation regions of Pennsylvania (the Poconos, PA Wilds, and Laurel Highlands) revealed a propensity for young overstory removals along forest edges, suggesting edge effects from inaccuracies in the underlying forest mask and mixed pixels contribute to errors of commission. Acknowledging this, overstory removal and shelterwood harvests were roughly equally common across public and private lands when expressed as a fraction of all interior forests (forests >30 m from an edge). The expectation that these harvest treatments would be rarer in private forests was not supported by the model results, which is likely due to the model's inability to distinguish between alternative natural processes (weather damage, wildfire, pathogens, etc.) and forest treatment types (high-grading and firewood collection) that result in similar forest structures to the trained classes in the XGBoost model. This study provides a framework and validation for combining approachable machine-learning techniques with large-campaign LiDAR to accurately predict forest structure with application to a host of forestry, natural resource, and conservation-related problems. Future efforts that refine the model's ability to better distinguish between more complex harvest classes and natural processes would be valuable.
AbstractList Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how structure is influenced by land-use practices. In many forested landscapes, the largest impacts of land use on forest structure are driven by forest management activities, which can include invasive species control, prescribed fire, partial harvests (e.g. shelterwood harvests) or overstory removals and clearcuts. Active timber management is often used to achieve forest conservation objectives, but to be used effectively, managers require knowledge of harvest frequency and extent in adjacent forests and at landscape scales. In this paper, we develop a timber harvest mapping workflow using machine learning (XGBoost algorithm) and single campaign airborne light detection and ranging (LiDAR) surveys for the state of Pennsylvania, USA. We show that harvest type (shelterwood and overstory removals) can be mapped at high accuracy (overall accuracy = 94.9%), including broad age classes defined by the number of years since harvest. Errors of omission (false negatives) were lowest for recent (<10 yr old) overstory removal harvests (1.5%) and highest for older (10–18 yr old) shelterwood harvests (34.9%), which is consistent with the expectation that older, partial timber harvests are more difficult to distinguish from untreated forests than are recent harvests. Errors of commission (false positives) were low (<6.0%) for all timber harvest types and ages. Analysis of model results across both public and private lands in three highly forested conservation regions of Pennsylvania (the Poconos, PA Wilds, and Laurel Highlands) revealed a propensity for young overstory removals along forest edges, suggesting edge effects from inaccuracies in the underlying forest mask and mixed pixels contribute to errors of commission. Acknowledging this, overstory removal and shelterwood harvests were roughly equally common across public and private lands when expressed as a fraction of all interior forests (forests >30 m from an edge). The expectation that these harvest treatments would be rarer in private forests was not supported by the model results, which is likely due to the model’s inability to distinguish between alternative natural processes (weather damage, wildfire, pathogens, etc.) and forest treatment types (high-grading and firewood collection) that result in similar forest structures to the trained classes in the XGBoost model. This study provides a framework and validation for combining approachable machine-learning techniques with large-campaign LiDAR to accurately predict forest structure with application to a host of forestry, natural resource, and conservation-related problems. Future efforts that refine the model’s ability to better distinguish between more complex harvest classes and natural processes would be valuable.
Author Fitzpatrick, Matthew C.
Fisher, G. Burch
Elmore, Andrew J.
McNeil, Darin J.
Atkins, Jeff W.
Larkin, Jeffery L.
Author_xml – sequence: 1
  givenname: G. Burch
  surname: Fisher
  fullname: Fisher, G. Burch
  email: gbf@ucsb.edu
  organization: National Socio-environmental Synthesis Center
– sequence: 2
  givenname: Andrew J.
  surname: Elmore
  fullname: Elmore, Andrew J.
  organization: National Socio-environmental Synthesis Center
– sequence: 3
  givenname: Matthew C.
  surname: Fitzpatrick
  fullname: Fitzpatrick, Matthew C.
  organization: University of Maryland Center for Environmental Science
– sequence: 4
  givenname: Darin J.
  surname: McNeil
  fullname: McNeil, Darin J.
  organization: University of Kentucky
– sequence: 5
  givenname: Jeff W.
  surname: Atkins
  fullname: Atkins, Jeff W.
  organization: USDA Forest Service
– sequence: 6
  givenname: Jeffery L.
  surname: Larkin
  fullname: Larkin, Jeffery L.
  organization: Indiana University of Pennsylvania
BookMark eNqFkd1u1DAQhSNUJNrCIyD5BbL4J05iuKEqP620CAnBtTWxx62rxF7Z7qJ9GN4Vp9ve9AJu7JHPnE_jOWfNSYgBm-YtoxtGR_qOyW5kPRUbTnm34WJQTI0vmlOmOtEOnPcnta497dr0qjnL-Y5SIRmTp82fb7Db-XBDEhoMhRS_TJjILaQ95kLAFL_35UB8IEAKLjtMUJC4mFb5Pq_W9ZiR2FUAn6aYApKt_3Txg-T7yjlkAsGSBcytr8qMkEK1vK9VzjHklUZMLTDtofgYyG6GsLa8bl46mDO-ebzPm19fPv-8vGq3379eX15sW9NxUdqJShwQe-Cd6oBLqZTtpWXSjFZMyllnHDUCJPSKTUpY4SSfKA6UOifAifPm-si1Ee70LvkF0kFH8PrhIaYbDal4M6MelFW9RWCC8w7q_m3F9E4pOjohjaysD0eWSTHnhE4bXx6-VRL4WTOq19T0U2p6TU0_plbd8pn7aZr_-T4efT7UbS7wO6bZ6gKHOSaXIBiftfg34i-tbLSN
CitedBy_id crossref_primary_10_1016_j_foreco_2025_123124
crossref_primary_10_1016_j_asej_2024_103258
crossref_primary_10_1016_j_foreco_2024_122442
crossref_primary_10_1016_j_srs_2025_100268
crossref_primary_10_1016_j_foreco_2025_122974
crossref_primary_10_3390_rs17050796
crossref_primary_10_1016_j_foreco_2025_122988
crossref_primary_10_3390_f16060972
crossref_primary_10_1080_15481603_2025_2555626
Cites_doi 10.1016/j.foreco.2011.09.022
10.1093/jof/90.1.33
10.1016/S0034-4257(01)00318-2
10.1093/jofore/fvx019
10.1002/wsb.266
10.1080/07038992.2019.1670051
10.5849/forsci.12-088
10.1016/j.gecco.2016.12.006
10.1080/07038992.2014.987376
10.1016/j.isprsjprs.2017.07.004
10.1093/condor/duaa052
10.1016/j.foreco.2013.12.001
10.1088/1748-9326/ab8b11
10.1353/book.83118
10.1080/07038992.2014.943392
10.1016/j.ecolind.2016.02.057
10.1093/condor/duz063
10.1111/2041-210X.12219
10.1093/jofore/fvab077
10.1007/978-94-007-1620-9_1
10.1111/j.1469-7998.2006.00158.x
10.1016/j.rse.2017.12.020
10.1093/jof/96.5.33
10.1093/jof/98.6.44
10.1080/23729333.2017.1288533
10.1029/2008jg000883
10.1017/CBO9780511810602
10.1016/j.tree.2007.10.001
10.3390/land10111116
10.1186/s40663-020-00254-z
10.3390/f9080474
10.1145/2939672.2939785
10.1093/forestry/cpab047
10.1016/j.rse.2021.112477
10.1111/2041-210X.13061
10.1016/S0378-1127(03)00246-9
10.1080/07038992.2018.1437719
10.1093/jof/105.4.179
10.1016/j.foreco.2018.09.046
10.14214/sf.9923
10.1016/j.rse.2019.03.009
10.1111/j.1523-1739.2011.01723.x
10.1016/j.foreco.2019.117742
10.1080/01431169508954436
10.5558/tfc84807-6
10.1016/j.compag.2020.105815
10.1890/09-1670.1
10.3390/f8010015
10.2307/3802048
10.1016/j.foreco.2020.118132
10.3390/rs13214282
10.5849/forsci.13-114
10.1016/j.isprsjprs.2017.11.018
10.1046/j.1365-2664.2001.00647.x
10.5751/ACE-01807-160116
10.1890/1051-0761(2002)012[0390:LEAFMD]2.0.CO;2
10.1016/j.foreco.2019.117484
10.1093/forestry/cpz048
10.1017/S0376892997000088
10.1002/rse2.24
10.1016/j.foreco.2014.06.009
10.1016/j.foreco.2022.120598
10.1016/j.rse.2017.03.035
10.1016/j.rse.2004.07.009
10.1139/cjfr-2013-0315
10.1093/forestry/cpy047
10.1038/s42256-019-0138-9
10.1016/j.compag.2017.12.034
10.1371/journal.pone.0052107
10.1016/j.rse.2009.01.003
10.1016/j.rse.2009.07.002
10.1016/j.rse.2014.02.015
10.1016/j.foreco.2023.121002
10.3390/f10060499
10.1038/s41597-022-01307-4
10.5751/ace-01193-130122
10.1016/j.rse.2020.112061
10.5849/forsci.13-153
10.1126/science.1244693
10.1016/j.rse.2022.113416
10.3390/rs61212837
10.1016/j.ecolmodel.2005.01.059
10.1093/jof/98.3.4
10.1007/s10530-013-0543-7
10.1016/S0034-4257(01)00245-0
10.5558/tfc2013-132
10.3996/nafa.79.0001
10.1080/07038992.2016.1207484
10.1111/2041-210X.12921
10.1093/forestscience/45.1.74
10.1080/09670874.2011.647836
10.1890/ES12-000352.1
10.1111/rec.13147
10.1088/1748-9326/abaad7
10.1002/ecs2.4209
10.1016/S0378-1127(01)00554-0
10.1016/j.landurbplan.2018.04.012
10.1525/cond.2012.110107
10.1097/00010694-196208000-00016
10.1093/forestscience/36.4.917
ContentType Journal Article
Copyright 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
Copyright_xml – notice: 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024
DBID 0YH
AAYXX
CITATION
DOA
DOI 10.1080/15481603.2024.2379198
DatabaseName Taylor & Francis Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1943-7226
ExternalDocumentID oai_doaj_org_article_79d96dea13224a108de706f9908f35c5
10_1080_15481603_2024_2379198
2379198
Genre Research Article
GrantInformation_xml – fundername: Natural Resources Conservation Service
  grantid: 69-3A75-17-438
– fundername: National Aeronautics and Space Administration
  grantid: NNX17AG41G
GroupedDBID 0YH
30N
4.4
5GY
AAHBH
AAJMT
ABCCY
ABFIM
ABPEM
ABTAI
ACGFS
ACTIO
ADCVX
AEISY
AENEX
AEYOC
AIJEM
AIYEW
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GROUPED_DOAJ
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
OK1
S-T
SNACF
TDBHL
TEI
TFL
TFW
TTHFI
UT5
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c423t-b05e7ee6a2494a25599d65d15c8d3b9fdfcf0c3a5a691b93d3f52b0e700ff3af3
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001272604700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1548-1603
IngestDate Mon Nov 10 04:32:52 EST 2025
Sat Nov 29 03:44:09 EST 2025
Tue Nov 18 20:49:14 EST 2025
Mon Oct 20 23:47:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-b05e7ee6a2494a25599d65d15c8d3b9fdfcf0c3a5a691b93d3f52b0e700ff3af3
OpenAccessLink https://doaj.org/article/79d96dea13224a108de706f9908f35c5
ParticipantIDs doaj_primary_oai_doaj_org_article_79d96dea13224a108de706f9908f35c5
crossref_primary_10_1080_15481603_2024_2379198
informaworld_taylorfrancis_310_1080_15481603_2024_2379198
crossref_citationtrail_10_1080_15481603_2024_2379198
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationTitle GIScience and remote sensing
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_4_3_1
e_1_3_4_61_1
e_1_3_4_84_1
e_1_3_4_42_1
e_1_3_4_80_1
e_1_3_4_7_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_69_1
e_1_3_4_27_1
e_1_3_4_65_1
e_1_3_4_88_1
e_1_3_4_102_1
e_1_3_4_72_1
e_1_3_4_95_1
e_1_3_4_106_1
e_1_3_4_53_1
e_1_3_4_91_1
e_1_3_4_30_1
e_1_3_4_34_1
e_1_3_4_11_1
e_1_3_4_76_1
e_1_3_4_99_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_57_1
e_1_3_4_19_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_85_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_81_1
e_1_3_4_24_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_66_1
e_1_3_4_47_1
e_1_3_4_89_1
e_1_3_4_101_1
e_1_3_4_73_1
e_1_3_4_105_1
e_1_3_4_31_1
e_1_3_4_50_1
e_1_3_4_92_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_77_1
e_1_3_4_63_1
e_1_3_4_86_1
e_1_3_4_9_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
e_1_3_4_104_1
e_1_3_4_74_1
e_1_3_4_97_1
e_1_3_4_51_1
e_1_3_4_70_1
e_1_3_4_93_1
e_1_3_4_13_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_78_1
e_1_3_4_36_1
e_1_3_4_4_1
e_1_3_4_83_1
e_1_3_4_64_1
e_1_3_4_8_1
e_1_3_4_41_1
e_1_3_4_60_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_49_1
e_1_3_4_87_1
e_1_3_4_26_1
e_1_3_4_68_1
PA-DCNR (e_1_3_4_71_1) 2020
e_1_3_4_103_1
e_1_3_4_94_1
e_1_3_4_75_1
e_1_3_4_107_1
e_1_3_4_52_1
e_1_3_4_90_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_98_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_79_1
e_1_3_4_18_1
References_xml – ident: e_1_3_4_79_1
  doi: 10.1016/j.foreco.2011.09.022
– ident: e_1_3_4_68_1
  doi: 10.1093/jof/90.1.33
– ident: e_1_3_4_101_1
  doi: 10.1016/S0034-4257(01)00318-2
– ident: e_1_3_4_8_1
  doi: 10.1093/jofore/fvx019
– ident: e_1_3_4_18_1
  doi: 10.1002/wsb.266
– ident: e_1_3_4_36_1
  doi: 10.1080/07038992.2019.1670051
– ident: e_1_3_4_77_1
  doi: 10.5849/forsci.12-088
– ident: e_1_3_4_102_1
– ident: e_1_3_4_62_1
  doi: 10.1016/j.gecco.2016.12.006
– ident: e_1_3_4_5_1
  doi: 10.1080/07038992.2014.987376
– ident: e_1_3_4_87_1
  doi: 10.1016/j.isprsjprs.2017.07.004
– ident: e_1_3_4_34_1
  doi: 10.1093/condor/duaa052
– ident: e_1_3_4_49_1
  doi: 10.1016/j.foreco.2013.12.001
– ident: e_1_3_4_104_1
  doi: 10.1088/1748-9326/ab8b11
– ident: e_1_3_4_72_1
  doi: 10.1353/book.83118
– ident: e_1_3_4_15_1
  doi: 10.1080/07038992.2014.943392
– ident: e_1_3_4_21_1
  doi: 10.1016/j.ecolind.2016.02.057
– ident: e_1_3_4_78_1
  doi: 10.1093/condor/duz063
– ident: e_1_3_4_90_1
  doi: 10.1111/2041-210X.12219
– ident: e_1_3_4_23_1
  doi: 10.1093/jofore/fvab077
– ident: e_1_3_4_40_1
  doi: 10.1007/978-94-007-1620-9_1
– ident: e_1_3_4_48_1
  doi: 10.1111/j.1469-7998.2006.00158.x
– ident: e_1_3_4_60_1
  doi: 10.1016/j.rse.2017.12.020
– ident: e_1_3_4_29_1
  doi: 10.1093/jof/96.5.33
– ident: e_1_3_4_28_1
  doi: 10.1093/jof/98.6.44
– ident: e_1_3_4_3_1
  doi: 10.1080/23729333.2017.1288533
– ident: e_1_3_4_10_1
  doi: 10.1029/2008jg000883
– ident: e_1_3_4_37_1
  doi: 10.1017/CBO9780511810602
– ident: e_1_3_4_76_1
  doi: 10.1016/j.tree.2007.10.001
– ident: e_1_3_4_53_1
  doi: 10.3390/land10111116
– ident: e_1_3_4_57_1
  doi: 10.1186/s40663-020-00254-z
– ident: e_1_3_4_44_1
  doi: 10.3390/f9080474
– ident: e_1_3_4_16_1
  doi: 10.1145/2939672.2939785
– ident: e_1_3_4_2_1
  doi: 10.1093/forestry/cpab047
– ident: e_1_3_4_20_1
  doi: 10.1016/j.rse.2021.112477
– ident: e_1_3_4_4_1
  doi: 10.1111/2041-210X.13061
– ident: e_1_3_4_13_1
  doi: 10.1016/S0378-1127(03)00246-9
– ident: e_1_3_4_45_1
  doi: 10.1080/07038992.2018.1437719
– ident: e_1_3_4_74_1
  doi: 10.1093/jof/105.4.179
– ident: e_1_3_4_41_1
  doi: 10.1016/j.foreco.2018.09.046
– ident: e_1_3_4_47_1
  doi: 10.14214/sf.9923
– ident: e_1_3_4_107_1
  doi: 10.1016/j.rse.2019.03.009
– ident: e_1_3_4_86_1
  doi: 10.1111/j.1523-1739.2011.01723.x
– ident: e_1_3_4_95_1
  doi: 10.1016/j.foreco.2019.117742
– ident: e_1_3_4_19_1
  doi: 10.1080/01431169508954436
– ident: e_1_3_4_103_1
  doi: 10.5558/tfc84807-6
– ident: e_1_3_4_22_1
  doi: 10.1016/j.compag.2020.105815
– ident: e_1_3_4_39_1
  doi: 10.1890/09-1670.1
– ident: e_1_3_4_46_1
  doi: 10.3390/f8010015
– ident: e_1_3_4_61_1
  doi: 10.2307/3802048
– ident: e_1_3_4_92_1
  doi: 10.1016/j.foreco.2020.118132
– ident: e_1_3_4_106_1
  doi: 10.3390/rs13214282
– ident: e_1_3_4_26_1
  doi: 10.5849/forsci.13-114
– ident: e_1_3_4_32_1
  doi: 10.1016/j.isprsjprs.2017.11.018
– ident: e_1_3_4_58_1
  doi: 10.1046/j.1365-2664.2001.00647.x
– ident: e_1_3_4_35_1
  doi: 10.5751/ACE-01807-160116
– ident: e_1_3_4_11_1
  doi: 10.1890/1051-0761(2002)012[0390:LEAFMD]2.0.CO;2
– ident: e_1_3_4_9_1
  doi: 10.1016/j.foreco.2019.117484
– ident: e_1_3_4_84_1
  doi: 10.1093/forestry/cpz048
– ident: e_1_3_4_33_1
  doi: 10.1017/S0376892997000088
– ident: e_1_3_4_73_1
  doi: 10.1002/rse2.24
– ident: e_1_3_4_42_1
  doi: 10.1016/j.foreco.2014.06.009
– ident: e_1_3_4_24_1
  doi: 10.1016/j.foreco.2022.120598
– ident: e_1_3_4_98_1
  doi: 10.1016/j.rse.2017.03.035
– ident: e_1_3_4_105_1
  doi: 10.1016/j.rse.2004.07.009
– ident: e_1_3_4_27_1
  doi: 10.1139/cjfr-2013-0315
– ident: e_1_3_4_66_1
  doi: 10.1093/forestry/cpy047
– ident: e_1_3_4_55_1
  doi: 10.1038/s42256-019-0138-9
– ident: e_1_3_4_75_1
  doi: 10.1016/j.compag.2017.12.034
– ident: e_1_3_4_12_1
  doi: 10.1371/journal.pone.0052107
– ident: e_1_3_4_30_1
  doi: 10.1016/j.rse.2009.01.003
– ident: e_1_3_4_59_1
  doi: 10.1016/j.rse.2009.07.002
– ident: e_1_3_4_69_1
  doi: 10.1016/j.rse.2014.02.015
– ident: e_1_3_4_63_1
  doi: 10.1016/j.foreco.2023.121002
– ident: e_1_3_4_56_1
  doi: 10.3390/f10060499
– ident: e_1_3_4_14_1
  doi: 10.1038/s41597-022-01307-4
– volume-title: Pennsylvania Forest Action Plan
  year: 2020
  ident: e_1_3_4_71_1
– ident: e_1_3_4_64_1
  doi: 10.5751/ace-01193-130122
– ident: e_1_3_4_80_1
  doi: 10.1016/j.rse.2020.112061
– ident: e_1_3_4_89_1
  doi: 10.5849/forsci.13-153
– ident: e_1_3_4_43_1
  doi: 10.1126/science.1244693
– ident: e_1_3_4_91_1
  doi: 10.1016/j.rse.2022.113416
– ident: e_1_3_4_70_1
  doi: 10.3390/rs61212837
– ident: e_1_3_4_7_1
  doi: 10.1016/j.ecolmodel.2005.01.059
– ident: e_1_3_4_83_1
  doi: 10.1093/jof/98.3.4
– ident: e_1_3_4_50_1
  doi: 10.1007/s10530-013-0543-7
– ident: e_1_3_4_81_1
  doi: 10.1016/S0034-4257(01)00245-0
– ident: e_1_3_4_99_1
  doi: 10.5558/tfc2013-132
– ident: e_1_3_4_85_1
  doi: 10.3996/nafa.79.0001
– ident: e_1_3_4_97_1
  doi: 10.1080/07038992.2016.1207484
– ident: e_1_3_4_17_1
  doi: 10.1111/2041-210X.12921
– ident: e_1_3_4_25_1
  doi: 10.1093/forestscience/45.1.74
– ident: e_1_3_4_93_1
  doi: 10.1080/09670874.2011.647836
– ident: e_1_3_4_31_1
  doi: 10.1890/ES12-000352.1
– ident: e_1_3_4_65_1
  doi: 10.1111/rec.13147
– ident: e_1_3_4_38_1
  doi: 10.1088/1748-9326/abaad7
– ident: e_1_3_4_52_1
  doi: 10.1002/ecs2.4209
– ident: e_1_3_4_51_1
  doi: 10.1016/S0378-1127(01)00554-0
– ident: e_1_3_4_94_1
  doi: 10.1016/j.landurbplan.2018.04.012
– ident: e_1_3_4_88_1
  doi: 10.1525/cond.2012.110107
– ident: e_1_3_4_6_1
  doi: 10.1097/00010694-196208000-00016
– ident: e_1_3_4_54_1
  doi: 10.1093/forestscience/36.4.917
SSID ssj0035115
Score 2.3957553
Snippet Effective planning for natural resource management and wildlife conservation requires detailed information on vegetation structure at landscape scales and how...
SourceID doaj
crossref
informaworld
SourceType Open Website
Enrichment Source
Index Database
Publisher
SubjectTerms Forest structure
overstory removal
private land
public land
shelterwood
XGBoost
SummonAdditionalLinks – databaseName: Taylor & Francis Open Access
  dbid: 0YH
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgcOBC-VS3fGgOiFtKNk7imNsWqHqACiGQyily7PESqc1WSVqpP4b_yozjVAUJOMAlSnbXI1se2_NmJ-8J8YIiZPISrRKVoknyEmWiVaET2ViJ0layQhfEJtTRUXV8rD_GasIhllUyhvYTUUTYq3lxm2aYK-JecZTN6siE7rJ8L5NKE3K-KW5lBE0Yf6VfD-fNmP8mKwJlak5gidrML_H8zsxPx1Ng8f-Fw_Ta6XOw_R_6fU_cjaEnrCZfuS9uYPdA7KwGToZvTi_hJYT7KdcxPBTfPxgmb1gDbYp0NMHYsngIfDM9U3MAvxHBwhPQdmCAKa6YnxmBBsFfc0H9GvhygsBpBTBtTw7XIbxv364-wXBOdi4HoOHAaSjpRIgaFuvXdEd-0w1sDSxXfMfcMZxFlaVH4svBu89vDpOo5pBYCtnGpEkLVIilIcCXm8B05srCLQtbOdlo77z1qZWmMKVeNlo66YusSVGlqffSePlYbHWbDncE2IZQozOqQTJVWq0zplumwM67kvAXLkQ-T2JtI9U5K26c1MvIiDpPRc1TUcepWIi9q2ZnE9fH3xrss4dc_ZipusMHm35dx5VfK-106dAw7M8NGXM0pNJTFFB5WdhiIfR1_6rHkKnxk6xKLf_Ygd1_aPtE3OHHibTyqdga-3N8Jm7bi7Ed-udhFf0ASc0aYQ
  priority: 102
  providerName: Taylor & Francis
Title Mapping recent timber harvest activity in a temperate forest using single date airborne LiDAR surveys and machine learning: lessons for conservation planning
URI https://www.tandfonline.com/doi/abs/10.1080/15481603.2024.2379198
https://doaj.org/article/79d96dea13224a108de706f9908f35c5
Volume 61
WOSCitedRecordID wos001272604700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1943-7226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035115
  issn: 1548-1603
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 1943-7226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035115
  issn: 1548-1603
  databaseCode: TFW
  dateStart: 20040601
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
– providerCode: PRVAWR
  databaseName: Taylor & Francis Open Access
  customDbUrl:
  eissn: 1943-7226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035115
  issn: 1548-1603
  databaseCode: 0YH
  dateStart: 20221201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4sAFQQF1C1RzqLil9a4TO-a2fKx6oBVCRZRT5NjjJVKbVpsUqT-G_8qMk62WHuiFS2Q58WiUmdieyfg9IfZph0xeYk1mJLos16gyawqbqdorVL5UJYZENmFOTsqzM_tlg-qLa8IGeODhxR0aG6wO6Dhqyt1UlgGN1JEm0TKqwif0UmnsOpga5mD-O1YkpNScYiQt1frsTikPuY-7KDac5QczZSzF3X-tSgm8_w506cais3gqnoy7RZgPWj4TD7DdFjvzjvPXlxc38BZSe0hPdM_F72PHeAtLoHmMVhPoG-b7gJ9uxWgawIcYmCsCmhYcMCoVQyojkAJ8m2vgl8CXcwTOBIBrVuQjLcLn5uP8K3TXJOemA9cGuEhVmAgj7cTyHbXI1G3H0sBzkfaY7oWrkRjphfi2-HT64SgbCRgyT7usPqtlgQZRO4rRcpfAyYIuwrTwZVC1jSH6KL1yhdN2WlsVVCxmtSQDyRiVi-ql2GovW9wR4GsK9IIzNZIo7a2dMUIy7cVi0BQy4UTkawNUfkQnZ5KM82o6gpiu7Vax3arRbhNxcDvsaoDnuG_Ae7bu7cOMrp06yOeq0eeq-3xuIuymb1R9Sq7EgQmlUv9UYPd_KPBKPGaZA-Dka7HVr67xjXjkf_VNt9oTD-WPo730QdD1dPH9D7s5C4c
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMGFN-rynAPilpJdx3HMbXmsitjuAS2iN8vxY4nUZqskReqP4b8y4yTVggQc4BJZcTyy5bE9Mxl_H2Mv0EJGLVEykak3SZZ7nigpVMJLyz23BS-8i2QTcrUqjo_V7l0YSqskHzr0QBFxr6bFTcHoMSXuFZnZRI-M7t0sO5hxqdB1vsquCTxrCT9_vfgy7sb0n0xEzNQMvSVsM97i-Z2Yn86nCOP_C4jpzvGzuP0_On6H3RqMT5j32nKXXfH1PbY_bykcvj29gJcQy320o73Pvh8Zgm_YAG6LeDhBVxF9CHw1DYFzAN2JIOoJqGowQCBXhNDsAUdB1ZRSvwF6nHigwAKYqkGVqz0sq3fzT9Ceo5yLFnA8cBqTOj0MLBab11hCzalbkgaWcr6H6DGcDTxLD9jnxfv128Nk4HNILBptXVKmwkvvc4MuX2Yi1pnLhZsKWzhequCCDanlRphcTUvFHQ9iVqZepmkI3AT-kO3V29rvM7Al-o3OyNKjqNwqNSPAZTTtgsvRA_MTlo2zqO0Adk6cGyd6OmCijlOhaSr0MBUTdnDZ7KxH-_hbgzekIpcfE1h3fLFtNnpY-1oqp3LnDTn-mUFhDoeUB7QDisCFFROmdhVMdzFWE3piFc3_2IFH_9D2ObtxuD5a6uWH1cfH7CZV9RCWT9he15z7p-y6_dZVbfMsLqkfjukeiw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagIMSFd9UtrzkgbinZdRzH3BbKCkRZVaiI3iLHjyVSm10laaX-GP4rM45TFSTgAJfIiuORLY_tmcn4-xh7gRYyaomSiUydTrLc8URJoRJeGe64KXjhbCCbkMtlcXysDmM2YRfTKsmH9gNQRNiraXFvrB8z4l6RlU3syOjdzbK9GZcKPefr7Aaazjkp-dHi67gZ028yESBTM3SWsM14ied3Yn46ngKK_y8YpldOn8Xd_9Dve-xOND1hPujKfXbNNQ_YzryjYPj69AJeQigPsY7uIfv-SRN4wwpwU8SjCfqayEPgm24JmgPoRgQRT0DdgAaCuCJ8Zgc4CKqmhPoV0OPEAYUVQNctKlzj4KDen3-G7gzlXHSAw4HTkNLpIHJYrF5jCfWm6UgaGMr4jrFj2ESWpUfsy-Ld0dv3SWRzSAyabH1SpcJJ53KNDl-mA9KZzYWdClNYXilvvfGp4VroXE0rxS33YlalTqap91x7vs22mnXjdhiYCr1Gq2XlUFRulJoR3DIadt7m6H-5CcvGSSxNhDonxo2TchoRUcepKGkqyjgVE7Z32WwzYH38rcEb0pDLjwmqO7xYt6syrvxSKqty6zS5_ZlGYRaHlHu0AgrPhRETpq7qV9mHSI0faFVK_scO7P5D2-fs1uH-ojz4sPz4mN2mmgG_8gnb6tsz95TdNOd93bXPwoL6ARZfHT0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+recent+timber+harvest+activity+in+a+temperate+forest+using+single+date+airborne+LiDAR+surveys+and+machine+learning%3A+lessons+for+conservation+planning&rft.jtitle=GIScience+and+remote+sensing&rft.au=G.+Burch+Fisher&rft.au=Andrew+J.+Elmore&rft.au=Matthew+C.+Fitzpatrick&rft.au=Darin+J.+McNeil&rft.date=2024-12-31&rft.pub=Taylor+%26+Francis+Group&rft.issn=1548-1603&rft.eissn=1943-7226&rft.volume=61&rft.issue=1&rft_id=info:doi/10.1080%2F15481603.2024.2379198&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79d96dea13224a108de706f9908f35c5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-1603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-1603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-1603&client=summon