A Deterministic Algorithm for Robust Location and Scatter

Most algorithms for highly robust estimators of multivariate location and scatter start by drawing a large number of random subsets. For instance, the FASTMCD algorithm of Rousseeuw and Van Driessen starts in this way, and then takes so-called concentration steps to obtain a more accurate approximat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and graphical statistics Jg. 21; H. 3; S. 618 - 637
Hauptverfasser: Hubert, Mia, Rousseeuw, Peter J., Verdonck, Tim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis Group 01.09.2012
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Schlagworte:
ISSN:1061-8600, 1537-2715
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most algorithms for highly robust estimators of multivariate location and scatter start by drawing a large number of random subsets. For instance, the FASTMCD algorithm of Rousseeuw and Van Driessen starts in this way, and then takes so-called concentration steps to obtain a more accurate approximation to the MCD. The FASTMCD algorithm is affine equivariant but not permutation invariant. In this article, we present a deterministic algorithm, denoted as DetMCD, which does not use random subsets and is even faster. It computes a small number of deterministic initial estimators, followed by concentration steps. DetMCD is permutation invariant and very close to affine equivariant. We compare it to FASTMCD and to the OGK estimator of Maronna and Zamar. We also illustrate it on real and simulated datasets, with applications involving principal component analysis, classification, and time series analysis. Supplemental material (Matlab code of the DetMCD algorithm and the datasets) is available online.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1061-8600
1537-2715
DOI:10.1080/10618600.2012.672100