Source-tracking unification

We propose a path-based framework for deriving and simplifying source-tracking information for first-order term unification in the empty theory. Such a framework is useful for diagnosing unification-based systems, including debugging of type errors in programs and the generation of success and failu...

Full description

Saved in:
Bibliographic Details
Published in:Information and computation Vol. 201; no. 2; pp. 121 - 159
Main Authors: Choppella, Venkatesh, Haynes, Christopher T.
Format: Journal Article
Language:English
Published: San Diego, CA Elsevier Inc 01.01.2003
Elsevier
Subjects:
ISSN:0890-5401, 1090-2651
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a path-based framework for deriving and simplifying source-tracking information for first-order term unification in the empty theory. Such a framework is useful for diagnosing unification-based systems, including debugging of type errors in programs and the generation of success and failure proofs in logic programming. The objects of source-tracking are deductions in the logic of term unification. The semantics of deductions are paths over a unification graph whose labels form the suffix language of a semi-Dyck set. Based on this idea of unification paths, two algorithms for generating proofs are presented: the first uses context-free labeled shortest-path algorithms to generate optimal (shortest) proofs in time O ( n 3) for a fixed signature, where n is the number of vertices of the unification graph. The second algorithm integrates easily with standard unification algorithms, entailing an overhead of only a constant factor, but generates non-optimal proofs. These non-optimal proofs may be further simplified by group rewrite rules.
ISSN:0890-5401
1090-2651
DOI:10.1016/j.ic.2004.10.013