AI-driven precision diagnosis and treatment in Parkinson’s disease: a comprehensive review and experimental analysis

Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in aging neuroscience Ročník 17; s. 1638340
Hlavní autor: Twala, Bhekisipho
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Media S.A 28.07.2025
Témata:
ISSN:1663-4365, 1663-4365
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management. This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework. A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis. The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns. AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
AbstractList Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management. This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework. A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis. The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns. AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.BackgroundParkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.This study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.ObjectiveThis study aims to comprehensively review current AI applications in Parkinson's disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.A systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.MethodsA systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.The systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.ResultsThe systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.AI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.ConclusionAI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
BackgroundParkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide. Traditional diagnostic approaches rely heavily on clinical observation and subjective assessment, often leading to delayed or inaccurate diagnoses. The emergence of artificial intelligence (AI) technologies offers unprecedented opportunities for precision diagnosis and personalized treatment strategies in PD management.ObjectiveThis study aims to comprehensively review current AI applications in Parkinson’s disease diagnosis and treatment, evaluate existing methodologies, and present experimental results from a novel multimodal AI diagnostic framework.MethodsA systematic review was conducted across PubMed, IEEE Xplore, and Web of Science databases from 2018 to 2024, focusing on AI applications in PD diagnosis and treatment. Additionally, we developed and tested a hybrid machine learning model combining deep learning, computer vision, and natural language processing techniques for PD assessment using motor symptom analysis, voice pattern recognition, and gait analysis.ResultsThe systematic review identified 127 relevant studies demonstrating significant advances in AI-driven PD diagnosis, with accuracy rates ranging from 78 to 96%. Our experimental framework achieved 94.2% accuracy in early-stage PD detection, outperforming traditional clinical assessment methods. The integrated approach showed particular strength in identifying subtle motor fluctuations and predicting treatment response patterns.ConclusionAI-driven approaches demonstrate substantial potential for revolutionizing PD diagnosis and treatment personalization. The integration of multiple data modalities and advanced machine learning algorithms enables earlier detection, more accurate monitoring, and optimized therapeutic interventions. Future research should focus on large-scale clinical validation and implementation frameworks for healthcare systems.
Author Twala, Bhekisipho
AuthorAffiliation Office of the DVC for Digital Transformation, Tshwane University of Technology , Pretoria , South Africa
AuthorAffiliation_xml – name: Office of the DVC for Digital Transformation, Tshwane University of Technology , Pretoria , South Africa
Author_xml – sequence: 1
  givenname: Bhekisipho
  surname: Twala
  fullname: Twala, Bhekisipho
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40791245$$D View this record in MEDLINE/PubMed
BookMark eNpVkktuFDEQhlsoiISQC7BAvWQzg-2y3d1sUBTxGCkSLGBtVdvVE4cee7B7BrLjGlyPk-B5ECXe2Kr666sq-X9enYQYqKpecjYHaLs3Q8Clnwsm1JxraEGyJ9UZ1xpmErQ6efA-rS5yvmXlADCm2mfVqWRNx4VUZ9X2cjFzyW8p1OtE1mcfQ-08LkPMPtcYXD0lwmlFYap9qL9g-u5DjuHv7z-5CDNhprc11jauCuCGQi6wOtHW0899Of1aU_K7ehxLAMe7An5RPR1wzHRxvM-rbx_ef736NLv-_HFxdXk9s1KIadZhjzhIpSxzqtMSFLq-oVZjq7TteqY6UBwcEus7q1rV9A3CYAVDciAJzqvFgesi3pp1mQPTnYnozT4Q09JgmrwdydiGoJfEG4ZCSt61um8bN8gBBu6GRhTWuwNrvelX5GzZKOH4CPo4E_yNWcat4QJAc5CF8PpISPHHhvJkVj5bGkcMFDfZgIC24R3otkhfPWx23-X_zxWBOAhsijknGu4lnJmdQ8zeIWbnEHN0CPwDHSay_w
Cites_doi 10.1371/journal.pone.009381
10.1109/TASSP.1980.1163420
10.5555/3454287.3455008
10.1109/ACCESS.2017.2676168
10.1016/j.nicl.2017.09.010
10.1093/brain/awt192
10.3171/jns.2006.104.4.506
10.1136/jnnp.2007.131045
10.2196/15182
10.1038/s41591-018-0307-0
10.1146/annurev-bioeng-071516-044442
10.1038/nrdp.2017.13
10.1126/science.aay9547
10.1002/mds.10527
10.1002/mds.26718
10.1093/jamia/ocv189
10.1161/CIRCULATIONAHA.115.001593
10.1002/mds.26642
10.1001/jamainternmed.2018.3763
10.5555/3045118.3045167
10.1016/S2589-7500(20)30292-2
10.1155/2013/717853
10.1002/mds.26312
10.1136/svn-2017-000101
10.1016/j.parkreldis.2015.02.026
10.1016/j.asoc.2017.11.001
10.1016/j.asoc.2018.10.022
10.1016/j.media.2018.05.004
10.1038/s41591-018-0300-7
10.1038/s41746-018-0029-1
10.1121/1.3514381
10.1016/j.eswa.2013.11.031
10.1002/mds.25383
10.1002/mds.26241
10.1371/journal.pmed.1000097
10.1038/s41591-018-0316-z
10.1002/mds.102
10.1162/neco.1997.9.8.1735
10.1002/mds.26424
10.1001/jama.2019.22360
10.1136/jnnp.55.3.181
10.1002/wsbm.1198
10.1016/j.ijmedinf.2016.03.001
10.1109/TBME.2012.2183367
10.1212/WNL.17.5.427
10.1001/jama.2018.17163
10.1016/s0197-4580(02)00065-9
10.1002/mds.22340
10.1212/WNL.0000000000002350
10.1080/0142159X.2019.1595557
10.1038/sdata.2016.11
10.1001/jama.2008.929
10.23919/ICACT.2018.8323864
10.1016/S2589-7500(21)00208-9
10.1016/j.patrec.2019.04.003
10.1056/NEJMoa1809983
10.1145/3313831.3376301
10.1016/j.jns.2020.117003
10.1186/s12874-018-0482-1
10.1093/ageing/26.5.353
10.1093/brain/117.5.1169
10.1002/mds.27528
10.1109/TPAMI.2021.3079209
10.1109/TBME.2018.2873252
10.1038/s41746-020-0253-3
10.1038/s41591-019-0548-6
10.1155/2018/3860146
10.1016/S1474-4422(18)30295-3
10.1001/archneur.56.1.33
10.1093/bib/bbx044
10.1002/mds.25628
10.1002/mds.870130310
10.1016/S0140-6736(14)61393-3
10.1007/BF02295996
10.1016/j.ejmp.2021.10.005
10.1073/pnas.1919012117
10.1212/01.wnl.0000180516.69442.95
10.3389/fneur.2020.00053
10.3389/fbioe.2015.00104
10.1038/s41551-018-0305-z
10.1093/brain/114.5.2283
10.1002/mds.26110
10.1038/nature14539
10.1002/ima.22141
10.1016/j.cmpb.2016.08.005
10.1056/NEJMoa0809335
10.1001/jamaneurol.2018.0809
10.1109/CVPR.2016.90
10.1016/j.bandc.2004.05.002
ContentType Journal Article
Copyright Copyright © 2025 Twala.
Copyright © 2025 Twala. 2025 Twala
Copyright_xml – notice: Copyright © 2025 Twala.
– notice: Copyright © 2025 Twala. 2025 Twala
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fnagi.2025.1638340
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1663-4365
ExternalDocumentID oai_doaj_org_article_c7e3b4e170a2441986b87df4f3f1df72
PMC12336134
40791245
10_3389_fnagi_2025_1638340
Genre Journal Article
GroupedDBID ---
53G
5VS
7X7
88I
8FE
8FH
8FI
8FJ
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ADBBV
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
E3Z
EIHBH
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
KQ8
LK8
M2P
M7P
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
TR2
UKHRP
ACXDI
ALIPV
IPNFZ
M48
NPM
RIG
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c422t-9abaaf455c0d596435adb7e86a856c9b0593513dae0b9c5857b7a3fc20aed34e3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001547932200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1663-4365
IngestDate Fri Oct 03 12:52:22 EDT 2025
Tue Nov 04 02:05:10 EST 2025
Fri Sep 05 15:15:29 EDT 2025
Fri Aug 15 02:01:24 EDT 2025
Sat Nov 29 07:41:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords neurodegeneration
precision medicine
digital biomarkers
machine learning
Parkinson’s disease
artificial intelligence
Language English
License Copyright © 2025 Twala.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-9abaaf455c0d596435adb7e86a856c9b0593513dae0b9c5857b7a3fc20aed34e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Rohan Gupta, University of South Carolina, United States
Reviewed by: Steven Gunzler, Case Western Reserve University, United States
Jinyang Huang, Hefei University of Technology, China
Edited by: Alice Maria Giani, Icahn School of Medicine at Mount Sinai, United States
OpenAccessLink https://doaj.org/article/c7e3b4e170a2441986b87df4f3f1df72
PMID 40791245
PQID 3238719368
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_c7e3b4e170a2441986b87df4f3f1df72
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12336134
proquest_miscellaneous_3238719368
pubmed_primary_40791245
crossref_primary_10_3389_fnagi_2025_1638340
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in aging neuroscience
PublicationTitleAlternate Front Aging Neurosci
PublicationYear 2025
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Davis (ref18) 1980; 28
Jenkinson (ref49) 1997; 26
Weaver (ref98) 2009; 301
Postuma (ref72) 2015; 30
Williams (ref100) 2020; 10
Sendak (ref87) 2020; 3
Yu (ref102) 2018; 2
Pereira (ref70) 2016; 136
Rusz (ref83) 2015; 3
Haq (ref37) 2018; 2018
Schrag (ref85) 2003; 18
Duncan (ref21) 2016; 31
(ref26) 2019
McNemar (ref60) 1947; 12
Rajkomar (ref77) 2019; 380
Kordower (ref53) 2013; 136
Simonyan (ref91) 2014
Topol (ref94) 2019; 25
Rusz (ref82) 2011; 129
Burciu (ref12) 2018; 33
Hausdorff (ref39) 1998; 13
Sendak (ref88) 2020; 8
Olanow (ref67) 2009; 361
Rajkomar (ref78) 2018; 1
Rosa (ref81) 2015; 30
Muehlematter (ref65) 2021; 3
Masters (ref59) 2019; 41
Del Din (ref19) 2016; 31
Larrazabal (ref54) 2020; 117
Espay (ref22) 2016; 31
Jankovic (ref48) 2008; 79
Bernardo (ref8) 2018; 2018
Galna (ref29) 2015; 30
Morris (ref64) 1994; 117
Prince (ref76) 2019; 66
Harel (ref38) 2004; 56
Shortliffe (ref90) 2018; 320
Ghassemi (ref32) 2021; 3
Chen (ref16) 2013; 5
Bahdanau (ref6) 2014
Poewe (ref71) 2017; 3
Moro-Velazquez (ref63) 2017; 62
Gianfrancesco (ref33) 2018; 178
Amoroso (ref2) 2018; 48
Stamatakis (ref92) 2013; 2013
Jiang (ref50) 2017; 2
Zhan (ref103) 2018; 75
(ref27) 2019
Moher (ref62) 2009; 6
Rizzo (ref80) 2016; 86
Guo (ref35) 2018; 2018
Sakar (ref84) 2019; 74
Babic (ref5) 2019; 366
He (ref40) 2019; 25
Shen (ref89) 2017; 19
Prashanth (ref74) 2014; 41
Katzman (ref36) 2018; 18
Hughes (ref45) 1992; 55
Miotto (ref61) 2018; 19
Esteva (ref23) 2019; 25
Cao (ref14) 2020; 11
Bai (ref7) 2018
Mandel (ref58) 2016; 23
Kalia (ref51) 2015; 386
Maetzler (ref57) 2013; 28
Vaswani (ref96) 2017; 30
Prashanth (ref75) 2016; 90
Arora (ref4) 2015; 21
(ref25) 2017
Yang (ref101) 2020; 2020
Butterworth (ref13) 1930; 7
Betrouni (ref9) 2019; 34
Stebbins (ref93) 2013; 28
Verschuur (ref97) 2019; 380
Fearnley (ref28) 1991; 114
(ref24) 2017; 117
Gelb (ref31) 1999; 56
Schwarz (ref86) 2014; 13
He (ref41) 2016; 2016
Chen (ref15) 2017; 5
Prashanth (ref73) 2018; 96
Kingma (ref52) 2014
LeCun (ref55) 2015; 521
Braak (ref11) 2003; 24
Wiens (ref99) 2019; 25
Hochreiter (ref42) 1997; 9
Ioffe (ref46) 2015; 2015
Rana (ref79) 2015; 25
Goetz (ref34) 2008; 23
Choi (ref17) 2017; 16
Ganin (ref30) 2015; 2015
Aich (ref1) 2018; 2018
Bot (ref10) 2016; 3
Hoehn (ref43) 1967; 17
Hospedales (ref44) 2021; 44
Pahwa (ref68) 2006; 104
Paszke (ref69) 2019; 32
(ref47) 2016
Armstrong (ref3) 2020; 323
Lugaresi (ref56) 2019
Muslimovic (ref66) 2005; 65
Dorsey (ref20) 2018; 17
Tsanas (ref95) 2012; 59
References_xml – volume: 13
  start-page: 461
  year: 2014
  ident: ref86
  article-title: The 'swallow tail' appearance of the healthy nigrosome - a new accurate test of Parkinson's disease: a case-control and cohort study
  publication-title: Lancet Neurol.
  doi: 10.1371/journal.pone.009381
– volume: 28
  start-page: 357
  year: 1980
  ident: ref18
  article-title: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1980.1163420
– volume: 30
  start-page: 5998
  year: 2017
  ident: ref96
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 32
  start-page: 8024
  year: 2019
  ident: ref69
  article-title: PyTorch: an imperative style, high-performance deep learning library
  publication-title: Adv. Neural. Inf. Process. Syst.
  doi: 10.5555/3454287.3455008
– year: 2017
  ident: ref25
– volume: 5
  start-page: 3095
  year: 2017
  ident: ref15
  article-title: Performance analysis of smartphone-sensor behavior for human activity recognition
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2017.2676168
– volume: 16
  start-page: 586
  year: 2017
  ident: ref17
  article-title: Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging
  publication-title: NeuroImage
  doi: 10.1016/j.nicl.2017.09.010
– volume: 136
  start-page: 2419
  year: 2013
  ident: ref53
  article-title: Disease duration and the integrity of the nigrostriatal system in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/awt192
– volume: 104
  start-page: 506
  year: 2006
  ident: ref68
  article-title: Long-term evaluation of deep brain stimulation of the thalamus
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2006.104.4.506
– volume: 79
  start-page: 368
  year: 2008
  ident: ref48
  article-title: Parkinson's disease: clinical features and diagnosis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2007.131045
– volume: 96
  start-page: 266
  year: 2018
  ident: ref73
  article-title: Novel cell-phone based diagnosis of Parkinson's disease using additive logistic regression
  publication-title: Comput. Biol. Med.
– volume-title: Arxiv
  year: 2014
  ident: ref6
  article-title: Neural machine translation by jointly learning to align and translate
– volume: 8
  start-page: e15182
  year: 2020
  ident: ref88
  article-title: Real-world integration of a sepsis deep learning technology into routine clinical care: implementation study
  publication-title: JMIR Med. Inform.
  doi: 10.2196/15182
– volume: 25
  start-page: 30
  year: 2019
  ident: ref40
  article-title: The practical implementation of artificial intelligence technologies in medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0307-0
– volume: 19
  start-page: 221
  year: 2017
  ident: ref89
  article-title: Deep learning in medical image analysis
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071516-044442
– volume: 3
  start-page: 17013
  year: 2017
  ident: ref71
  article-title: Parkinson disease
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2017.13
– volume: 366
  start-page: 1202
  year: 2019
  ident: ref5
  article-title: Algorithms on regulatory lockdown in medicine
  publication-title: Science
  doi: 10.1126/science.aay9547
– volume: 18
  start-page: 1250
  year: 2003
  ident: ref85
  article-title: Young- versus older-onset Parkinson's disease: impact of disease and psychosocial consequences
  publication-title: Mov. Disord.
  doi: 10.1002/mds.10527
– volume: 31
  start-page: 1293
  year: 2016
  ident: ref19
  article-title: Free-living monitoring of Parkinson's disease: lessons from the field
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26718
– volume: 23
  start-page: 899
  year: 2016
  ident: ref58
  article-title: SMART on FHIR: a standards-based, interoperable apps platform for electronic health records
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocv189
– volume: 380
  start-page: 1347
  year: 2019
  ident: ref77
  article-title: Machine learning in medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 31
  start-page: 1272
  year: 2016
  ident: ref22
  article-title: Technology in Parkinson's disease: challenges and opportunities
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26642
– volume: 178
  start-page: 1544
  year: 2018
  ident: ref33
  article-title: Potential biases in machine learning algorithms using electronic health record data
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2018.3763
– volume: 2015
  start-page: 448
  year: 2015
  ident: ref46
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proc. Int. Conf. Mach. Learn.
  doi: 10.5555/3045118.3045167
– volume: 3
  start-page: e195
  year: 2021
  ident: ref65
  article-title: Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis
  publication-title: Lancet Digit Health.
  doi: 10.1016/S2589-7500(20)30292-2
– volume-title: Arxiv
  year: 2014
  ident: ref52
  article-title: Adam: a method for stochastic optimization
– volume: 2013
  start-page: 1
  year: 2013
  ident: ref92
  article-title: Finger tapping clinometric score prediction in Parkinson's disease using low-cost accelerometers
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2013/717853
– volume: 31
  start-page: 103
  year: 2016
  ident: ref21
  article-title: Gray and white matter imaging: a biomarker for cognitive impairment in early Parkinson's disease?
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26312
– volume: 2
  start-page: 230
  year: 2017
  ident: ref50
  article-title: Artificial intelligence in healthcare: past, present and future
  publication-title: Stroke Vasc Neurol.
  doi: 10.1136/svn-2017-000101
– volume: 21
  start-page: 650
  year: 2015
  ident: ref4
  article-title: Detecting and monitoring the symptoms of Parkinson's disease using smartphones: a pilot study
  publication-title: Parkinsonism Relat. Disord.
  doi: 10.1016/j.parkreldis.2015.02.026
– volume: 62
  start-page: 649
  year: 2017
  ident: ref63
  article-title: Analysis of speaker recognition methodologies and the influence of kinetic changes to automatically detect Parkinson's disease
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.001
– volume: 74
  start-page: 255
  year: 2019
  ident: ref84
  article-title: A comparative analysis of speech signal processing algorithms for Parkinson's disease classification and the use of the tunable Q-factor wavelet transform
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.022
– volume: 48
  start-page: 12
  year: 2018
  ident: ref2
  article-title: Complex networks reveal early MRI markers of Parkinson's disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.05.004
– volume: 25
  start-page: 44
  year: 2019
  ident: ref94
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 1
  start-page: 18
  year: 2018
  ident: ref78
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-018-0029-1
– volume: 129
  start-page: 350
  year: 2011
  ident: ref82
  article-title: Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3514381
– volume: 41
  start-page: 3333
  year: 2014
  ident: ref74
  article-title: Automatic classification and prediction models for early Parkinson's disease diagnosis from SPECT imaging
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.031
– volume: 28
  start-page: 668
  year: 2013
  ident: ref93
  article-title: How to identify tremor dominant and postural instability/gait difficulty groups with the movement disorder society unified Parkinson's disease rating scale: comparison with the unified Parkinson's disease rating scale
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25383
– volume: 30
  start-page: 1003
  year: 2015
  ident: ref81
  article-title: Adaptive deep brain stimulation in a freely moving parkinsonian patient
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26241
– volume: 6
  start-page: e1000097
  year: 2009
  ident: ref62
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1000097
– volume: 25
  start-page: 24
  year: 2019
  ident: ref23
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0316-z
– volume: 33
  start-page: 1688
  year: 2018
  ident: ref12
  article-title: Imaging of motor cortex physiology in Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.102
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref42
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 30
  start-page: 1591
  year: 2015
  ident: ref72
  article-title: MDS clinical diagnostic criteria for Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26424
– volume: 323
  start-page: 548
  year: 2020
  ident: ref3
  article-title: Diagnosis and treatment of Parkinson's disease: a review
  publication-title: JAMA
  doi: 10.1001/jama.2019.22360
– volume: 55
  start-page: 181
  year: 1992
  ident: ref45
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinicopathological study of 100 cases
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.55.3.181
– volume: 5
  start-page: 73
  year: 2013
  ident: ref16
  article-title: Promise of personalized omics to precision medicine
  publication-title: Wiley Interdiscip. Rev. Syst. Biol. Med.
  doi: 10.1002/wsbm.1198
– volume: 90
  start-page: 13
  year: 2016
  ident: ref75
  article-title: High-accuracy detection of early Parkinson's disease through multimodal features and machine learning
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2016.03.001
– volume: 59
  start-page: 1264
  year: 2012
  ident: ref95
  article-title: Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease
  publication-title: I.E.E.E. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2183367
– volume: 17
  start-page: 427
  year: 1967
  ident: ref43
  article-title: Parkinsonism: onset, progression and mortality
  publication-title: Neurology
  doi: 10.1212/WNL.17.5.427
– volume: 320
  start-page: 2199
  year: 2018
  ident: ref90
  article-title: Clinical decision support in the era of artificial intelligence
  publication-title: JAMA
  doi: 10.1001/jama.2018.17163
– volume: 24
  start-page: 197
  year: 2003
  ident: ref11
  article-title: Staging of brain pathology related to sporadic Parkinson's disease
  publication-title: Neurobiol. Aging
  doi: 10.1016/s0197-4580(02)00065-9
– volume: 23
  start-page: 2129
  year: 2008
  ident: ref34
  article-title: Movement Disorder Society-sponsored revision of the unified Parkinson's disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results
  publication-title: Mov. Disord.
  doi: 10.1002/mds.22340
– volume: 86
  start-page: 566
  year: 2016
  ident: ref80
  article-title: Accuracy of clinical diagnosis of Parkinson's disease: a systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002350
– volume: 2015
  start-page: 1180
  year: 2015
  ident: ref30
  article-title: Unsupervised domain adaptation by backpropagation
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 41
  start-page: 976
  year: 2019
  ident: ref59
  article-title: Artificial intelligence in medical education
  publication-title: Med. Teach.
  doi: 10.1080/0142159X.2019.1595557
– volume: 3
  start-page: 160011
  year: 2016
  ident: ref10
  article-title: The mPower study, Parkinson's disease mobile data collected using ResearchKit
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.11
– volume: 301
  start-page: 63
  year: 2009
  ident: ref98
  article-title: Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial
  publication-title: JAMA
  doi: 10.1001/jama.2008.929
– volume: 2018
  start-page: 638
  year: 2018
  ident: ref1
  article-title: A non-linear decision tree-based classification approach to predict the Parkinson's disease using different feature sets of voice data
  publication-title: Proc. Int. Conf. Adv. Commun. Technol.
  doi: 10.23919/ICACT.2018.8323864
– volume-title: Arxiv
  year: 2018
  ident: ref7
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modelling
– volume: 3
  start-page: e745
  year: 2021
  ident: ref32
  article-title: The false hope of current approaches to explainable artificial intelligence in health care
  publication-title: Lancet Digit Health.
  doi: 10.1016/S2589-7500(21)00208-9
– volume: 2018
  start-page: 4764
  year: 2018
  ident: ref8
  article-title: Handwriting pattern recognition as a complementary technique for detecting Parkinson's disease
  publication-title: Proc. Int. Conf. Pattern Recognit.
  doi: 10.1016/j.patrec.2019.04.003
– volume: 380
  start-page: 315
  year: 2019
  ident: ref97
  article-title: Randomized delayed-start trial of levodopa in Parkinson's disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1809983
– volume: 2020
  start-page: 4527
  year: 2020
  ident: ref101
  article-title: Re-examining whether, why, and how human-AI interaction is uniquely difficult to design
  publication-title: Proc SIGCHI Conf Hum Factor Comput Syst.
  doi: 10.1145/3313831.3376301
– volume: 10
  start-page: 597
  year: 2020
  ident: ref100
  article-title: The discerning eye of computer vision: can it measure Parkinson's motor symptoms?
  publication-title: J. Parkinsons Dis.
  doi: 10.1016/j.jns.2020.117003
– volume: 18
  start-page: 24
  year: 2018
  ident: ref36
  article-title: DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-018-0482-1
– volume: 26
  start-page: 353
  year: 1997
  ident: ref49
  article-title: The Parkinson's disease questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score
  publication-title: Age Ageing
  doi: 10.1093/ageing/26.5.353
– volume: 117
  start-page: 1169
  year: 1994
  ident: ref64
  article-title: The pathogenesis of gait hypokinesia in Parkinson's disease
  publication-title: Brain
  doi: 10.1093/brain/117.5.1169
– volume: 34
  start-page: 210
  year: 2019
  ident: ref9
  article-title: Electroencephalography-based machine learning for cognitive profiling in Parkinson's disease: preliminary results
  publication-title: Mov. Disord.
  doi: 10.1002/mds.27528
– volume: 117
  start-page: 1
  year: 2017
  ident: ref24
  article-title: Regulation (EU) 2017/745 of the European Parliament and of the council on medical devices
  publication-title: Off. J. Eur. Union
– volume: 44
  start-page: 1
  year: 2021
  ident: ref44
  article-title: Meta-learning in neural networks: a survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3079209
– volume: 66
  start-page: 1402
  year: 2019
  ident: ref76
  article-title: Multi-source ensemble learning for the remote prediction of Parkinson's disease in the presence of source-wise missing data
  publication-title: I.E.E.E. Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2873252
– volume: 3
  start-page: 41
  year: 2020
  ident: ref87
  article-title: Presenting machine learning model information to clinical end users with model facts labels
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-020-0253-3
– volume: 25
  start-page: 1337
  year: 2019
  ident: ref99
  article-title: Do no harm: a roadmap for responsible machine learning for health care
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0548-6
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref37
  article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms
  publication-title: Mob. Inf. Syst.
  doi: 10.1155/2018/3860146
– volume: 17
  start-page: 939
  year: 2018
  ident: ref20
  article-title: Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the global burden of disease study 2016
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(18)30295-3
– volume: 56
  start-page: 33
  year: 1999
  ident: ref31
  article-title: Diagnostic criteria for Parkinson's disease
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.56.1.33
– volume: 19
  start-page: 1236
  year: 2018
  ident: ref61
  article-title: Deep learning for healthcare: review, opportunities and challenges
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbx044
– volume-title: Arxiv
  year: 2019
  ident: ref56
  article-title: MediaPipe: a framework for building perception pipelines
– volume: 7
  start-page: 536
  year: 1930
  ident: ref13
  article-title: On the theory of filter amplifiers
  publication-title: Exp. Wireless Eng.
– volume: 28
  start-page: 1628
  year: 2013
  ident: ref57
  article-title: Quantitative wearable sensors for objective assessment of Parkinson's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.25628
– volume: 13
  start-page: 428
  year: 1998
  ident: ref39
  article-title: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease
  publication-title: Mov. Disord.
  doi: 10.1002/mds.870130310
– volume-title: Arxiv
  year: 2014
  ident: ref91
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 386
  start-page: 896
  year: 2015
  ident: ref51
  article-title: Parkinson's disease
  publication-title: Lancet
  doi: 10.1016/S0140-6736(14)61393-3
– volume: 12
  start-page: 153
  year: 1947
  ident: ref60
  article-title: Note on the sampling error of the difference between correlated proportions or percentages
  publication-title: Psychometrika
  doi: 10.1007/BF02295996
– volume: 2018
  start-page: 529
  year: 2018
  ident: ref35
  article-title: Rescue-me: a framework for distributed collaborative machine learning for clinical decision support
  publication-title: Proc. AMIA Annu. Symp.
  doi: 10.1016/j.ejmp.2021.10.005
– volume: 117
  start-page: 12592
  year: 2020
  ident: ref54
  article-title: Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1919012117
– volume: 65
  start-page: 1239
  year: 2005
  ident: ref66
  article-title: Cognitive profile of patients with newly diagnosed Parkinson's disease
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000180516.69442.95
– volume-title: Quality system regulation 21 CFR part 820
  year: 2019
  ident: ref27
– volume: 11
  start-page: 53
  year: 2020
  ident: ref14
  article-title: Abnormal anatomical rich-club organization and structural-functional coupling in mild cognitive impairment and Alzheimer's disease
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2020.00053
– volume: 3
  start-page: 104
  year: 2015
  ident: ref83
  article-title: Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2015.00104
– volume: 2
  start-page: 719
  year: 2018
  ident: ref102
  article-title: Artificial intelligence in healthcare
  publication-title: Nat Biomed Eng.
  doi: 10.1038/s41551-018-0305-z
– volume: 114
  start-page: 2283
  year: 1991
  ident: ref28
  article-title: Ageing and Parkinson's disease: substantia nigra regional selectivity
  publication-title: Brain
  doi: 10.1093/brain/114.5.2283
– volume-title: ISO 13485:2016 Medical devices - quality management systems - requirements for regulatory purposes
  year: 2016
  ident: ref47
– year: 2019
  ident: ref26
– volume: 30
  start-page: 359
  year: 2015
  ident: ref29
  article-title: Progression of gait dysfunction in incident Parkinson's disease: impact of medication and phenotype
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26110
– volume: 521
  start-page: 436
  year: 2015
  ident: ref55
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 25
  start-page: 245
  year: 2015
  ident: ref79
  article-title: Graph-theory-based spectral feature selection for computer-aided diagnosis of Parkinson's disease using T1-weighted MRI
  publication-title: Expert Syst. Appl.
  doi: 10.1002/ima.22141
– volume: 136
  start-page: 79
  year: 2016
  ident: ref70
  article-title: A new computer vision-based approach to aid the diagnosis of Parkinson's disease
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.08.005
– volume: 361
  start-page: 1268
  year: 2009
  ident: ref67
  article-title: A double-blind, delayed-start trial of rasagiline in Parkinson's disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0809335
– volume: 75
  start-page: 876
  year: 2018
  ident: ref103
  article-title: Using smartphones and machine learning to quantify Parkinson disease severity: the mobile Parkinson disease score
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2018.0809
– volume: 2016
  start-page: 770
  year: 2016
  ident: ref41
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
  doi: 10.1109/CVPR.2016.90
– volume: 56
  start-page: 24
  year: 2004
  ident: ref38
  article-title: Variability in fundamental frequency during speech in prodromal and incipient Parkinson's disease: a longitudinal case study
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2004.05.002
SSID ssj0000330058
Score 2.3861985
Snippet Parkinson's disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide....
BackgroundParkinson’s disease (PD) represents one of the most prevalent neurodegenerative disorders globally, affecting over 10 million individuals worldwide....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1638340
SubjectTerms Aging Neuroscience
artificial intelligence
digital biomarkers
machine learning
neurodegeneration
Parkinson’s disease
precision medicine
Title AI-driven precision diagnosis and treatment in Parkinson’s disease: a comprehensive review and experimental analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/40791245
https://www.proquest.com/docview/3238719368
https://pubmed.ncbi.nlm.nih.gov/PMC12336134
https://doaj.org/article/c7e3b4e170a2441986b87df4f3f1df72
Volume 17
WOSCitedRecordID wos001547932200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: 7X7
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1663-4365
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000330058
  issn: 1663-4365
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BixAXxLME6MpI3FBoNnZih1tbtaISu4oQoOUU-RV1L2mV3fbM3-Dv8UuYsdNVFiH10ssc8lAsj-P5Pnv8DcD7XIvM2tymhoxAxJ1WWVmlBsO7Qvrc-iDX9OOLnM_VYlHVo1JflBMW5YFjxx1Y6bkRfiozjZEIKXJplHStaHk7da0Ms28mqxGZCnMwJxl2FU_JIAurDlqq-oN8MC8-EgThtNoxikRBsP9_KPPfZMlR9Dl9Ao8H2MgOY3Ofwj3fPYOHs2Fj_DlcH56lrqeZi132Q9kc5mIa3XLFdOfYJqWcLTtGh53Dua8_v36v2LBL84lpRinmvT-Pae0sHmwJr49LAeCFKGXyAr6fnnw7_pwOJRVSK_J8nVbaaN2KorCZK0iKq9Ckr6xKrYrSVoYK_BVT7rTPTGWRSkgjNW9tnmnvuPD8Jex0F51_BQyBG852TiDFNKLkmSm184gHvVAecWSewIeb7m0uo3JGg4yDnNEEZzTkjGZwRgJH5IHNk6R6HS7gWGiGsdDcNhYSeHfjvwb_Etr60J2_uFo1HJGJRKxaqgT2oj83n0JKWyHKKRJQW57easv2nW55HpS4MexzxEPi9V20_g08oh6hheNcvYWddX_l9-GBvV4vV_0E7suFDFZNYPfoZF5_nYQxj3aW12Ql2t36bFb__AtgCgoz
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-driven+precision+diagnosis+and+treatment+in+Parkinson%E2%80%99s+disease%3A+a+comprehensive+review+and+experimental+analysis&rft.jtitle=Frontiers+in+aging+neuroscience&rft.au=Twala%2C+Bhekisipho&rft.date=2025-07-28&rft.issn=1663-4365&rft.eissn=1663-4365&rft.volume=17&rft_id=info:doi/10.3389%2Ffnagi.2025.1638340&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnagi_2025_1638340
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-4365&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-4365&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-4365&client=summon