A New Optimal Sensor Placement Strategy Based on Modified Modal Assurance Criterion and Improved Adaptive Genetic Algorithm for Structural Health Monitoring

Optimal sensor placement (OSP) is an important part in the structural health monitoring. Due to the ability of ensuring the linear independence of the tested modal vectors, the minimum modal assurance criterion (minMAC) is considered as an effective method and is used widely. However, some defects a...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering Vol. 2015; no. 2015; pp. 1 - 10
Main Authors: Wang, Ronghao, Yang, Qiliang, Li, Juelong, Xing, Jianchun, He, Can, Zhang, Xun
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01.01.2015
John Wiley & Sons, Inc
Subjects:
ISSN:1024-123X, 1563-5147
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimal sensor placement (OSP) is an important part in the structural health monitoring. Due to the ability of ensuring the linear independence of the tested modal vectors, the minimum modal assurance criterion (minMAC) is considered as an effective method and is used widely. However, some defects are present in this method, such as the low modal energy and the long computation time. A new OSP method named IAGA-MMAC is presented in this study to settle the issue. First, a modified modal assurance criterion (MMAC) is proposed to improve the modal energy of the selected locations. Then, an improved adaptive genetic algorithm (IAGA), which uses the root mean square of off-diagonal elements in the MMAC matrix as the fitness function, is proposed to enhance computation efficiency. A case study of sensor placement on a numerically simulated wharf structure is provided to verify the effectiveness of the IAGA-MMAC strategy, and two different methods are used as contrast experiments. A comparison of these strategies shows that the optimal results obtained by the IAGA-MMAC method have a high modal strain energy, a quick computational speed, and small off-diagonal elements in the MMAC matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1024-123X
1563-5147
DOI:10.1155/2015/626342