A Probabilistic Associative Model for Segmenting Weakly Supervised Images
Weakly supervised image segmentation is an important yet challenging task in image processing and pattern recognition fields. It is defined as: in the training stage, semantic labels are only at the image-level, without regard to their specific object/scene location within the image. Given a test im...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 23; číslo 9; s. 4150 - 4159 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Weakly supervised image segmentation is an important yet challenging task in image processing and pattern recognition fields. It is defined as: in the training stage, semantic labels are only at the image-level, without regard to their specific object/scene location within the image. Given a test image, the goal is to predict the semantics of every pixel/superpixel. In this paper, we propose a new weakly supervised image segmentation model, focusing on learning the semantic associations between superpixel sets (graphlets in this paper). In particular, we first extract graphlets from each image, where a graphlet is a small-sized graph measures the potential of multiple spatially neighboring superpixels (i.e., the probability of these superpixels sharing a common semantic label, such as the sky or the sea). To compare different-sized graphlets and to incorporate image-level labels, a manifold embedding algorithm is designed to transform all graphlets into equal-length feature vectors. Finally, we present a hierarchical Bayesian network to capture the semantic associations between postembedding graphlets, based on which the semantics of each superpixel is inferred accordingly. Experimental results demonstrate that: 1) our approach performs competitively compared with the state-of-the-art approaches on three public data sets and 2) considerable performance enhancement is achieved when using our approach on segmentation-based photo cropping and image categorization. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1057-7149 1941-0042 1941-0042 |
| DOI: | 10.1109/TIP.2014.2344433 |