Attention-based CNN-BiLSTM for SOH and RUL estimation of lithium-ion batteries

The state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries describe the current aging degree of the batteries from different perspectives, and accurate and efficient battery health estimation is essential for their safe use. To improve the effectiveness and accuracy of the ba...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of algorithms & computational technology Ročník 16
Hlavní autoři: Zhu, Zhenyu, Yang, Qing, Liu, Xin, Gao, Dexin
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England SAGE Publications 01.10.2022
Sage Publications Ltd
SAGE Publishing
Témata:
ISSN:1748-3018, 1748-3026
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries describe the current aging degree of the batteries from different perspectives, and accurate and efficient battery health estimation is essential for their safe use. To improve the effectiveness and accuracy of the batteries’ health assessment models, this paper proposes a new method for SOH and RUL estimation of lithium-ion batteries. Convolutional neural networks (CNNs), bi-directional long short-term memory (BiLSTM), and attention mechanism (AM) to build a hybrid network model for capacity estimation of lithium-ion batteries, and further calculate the SOH and RUL estimation results. By using Center for Advanced Life Cycle Engineering (CALCE) lithium-ion battery capacity degradation data, we extracted the battery health indicator (HI) and verified the reasonableness of HI selection by using Gray Relational Analysis (GRA) and compared it with other network models to calculate the prediction accuracy by various evaluation indexes. The experimental results show that the method has higher estimation accuracy while avoiding the construction of complex battery mechanism degradation models and is highly generalized.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1748-3018
1748-3026
DOI:10.1177/17483026221130598