Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse
Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic tempora...
Saved in:
| Published in: | Agriculture (Basel) Vol. 11; no. 8; p. 802 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.08.2021
|
| Subjects: | |
| ISSN: | 2077-0472, 2077-0472 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses. |
|---|---|
| AbstractList | Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses. Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO₂) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO₂ concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses. |
| Author | Jin, Xue-Bo Zuo, Min Lin, Seng Wang, Xiao-Yi Zhang, Qing-Chuan Zheng, Wei-Zhen Kong, Jian-Lei |
| Author_xml | – sequence: 1 givenname: Xue-Bo orcidid: 0000-0002-2230-0077 surname: Jin fullname: Jin, Xue-Bo – sequence: 2 givenname: Wei-Zhen surname: Zheng fullname: Zheng, Wei-Zhen – sequence: 3 givenname: Jian-Lei orcidid: 0000-0002-0074-3467 surname: Kong fullname: Kong, Jian-Lei – sequence: 4 givenname: Xiao-Yi surname: Wang fullname: Wang, Xiao-Yi – sequence: 5 givenname: Min surname: Zuo fullname: Zuo, Min – sequence: 6 givenname: Qing-Chuan surname: Zhang fullname: Zhang, Qing-Chuan – sequence: 7 givenname: Seng surname: Lin fullname: Lin, Seng |
| BookMark | eNp9ks-O0zAQxiO0SCzLPgGXSFy4BOzYiZ3j_qdSpUWinC3HHheXxC4TpytuvANH3o4nwW1BQiuEffDI832_0djzvDgJMUBRvKTkDWMdeavX6M08pBmBUiLzrp8UpzURoiJc1Cd_xc-K82nakLw6yiRpT4sf1wDbagkagw_rcgXjNqIeyvcI1psUsdx5XV566xFM8jHk3AcYXHWREoTkd1DeBBMt4M9v36_hEJW3qEd4iPi5dBmwuF9Vl3oCm5U7jzGM2XjAhGlf04dyERIMg1_nRHmHAOFTnCd4UTx1epjg_Pd5Vny8vVldvauW93eLq4tlZXhNU2WFpsLaXgrSgmykZMSStreCA2jjtKi1pB0ltO36zkrXyaY1TDpigDkrHDsrFkeujXqjtuhHjV9V1F4dLiKulcbkzQDKcto3oq5533POCGjHM8axvnHOWa4z6_WRtcX4ZYYpqdFPJjenA-SeVN2ylouulW2Wvnok3cQZ8wNnVdNyLruuoVnVHVUG4zQhOGV80vufSKj9oChR-ylQ_5iC7GWPvH-a-5_rF7HSwAk |
| CitedBy_id | crossref_primary_10_1155_2022_2631693 crossref_primary_10_1155_2022_4379317 crossref_primary_10_3390_info14080451 crossref_primary_10_3390_agronomy12030591 crossref_primary_10_1155_2022_1504454 crossref_primary_10_1155_2022_6260395 crossref_primary_10_1155_2021_1194565 crossref_primary_10_3390_app12136396 crossref_primary_10_1155_2022_9433661 crossref_primary_10_1016_j_compag_2025_110603 crossref_primary_10_3390_mi14020440 crossref_primary_10_3390_e24030360 crossref_primary_10_1007_s11036_023_02256_x crossref_primary_10_1155_2022_5985733 crossref_primary_10_1155_2022_2914571 crossref_primary_10_1155_2022_3511535 crossref_primary_10_1109_ACCESS_2023_3285242 crossref_primary_10_1155_2022_1061569 crossref_primary_10_3390_mi13091427 crossref_primary_10_1155_2022_9519274 crossref_primary_10_3390_math10040610 crossref_primary_10_3390_foods11121690 crossref_primary_10_1016_j_apenergy_2025_125341 crossref_primary_10_1016_j_scitotenv_2023_164858 crossref_primary_10_1155_2022_3781859 crossref_primary_10_1155_2022_8434966 crossref_primary_10_3390_agriculture13030567 crossref_primary_10_1080_02286203_2025_2478997 crossref_primary_10_3390_horticulturae9080853 crossref_primary_10_3390_foods11071061 crossref_primary_10_3390_e24030335 crossref_primary_10_1155_2022_6048297 crossref_primary_10_3390_app12073602 crossref_primary_10_3390_electronics13173484 crossref_primary_10_1016_j_compag_2023_108537 crossref_primary_10_1155_2022_2387016 crossref_primary_10_1155_2022_7773259 crossref_primary_10_3390_agronomy13030625 crossref_primary_10_3390_s24103258 crossref_primary_10_32604_cmes_2022_019244 crossref_primary_10_1155_2022_3672905 crossref_primary_10_1155_2022_7512692 crossref_primary_10_1155_2021_7849255 crossref_primary_10_3390_machines10111076 crossref_primary_10_1155_2022_2794889 crossref_primary_10_1155_2022_1212527 crossref_primary_10_1155_2022_5028866 crossref_primary_10_1155_2022_6993515 crossref_primary_10_1155_2022_4162998 crossref_primary_10_1155_2022_2783792 crossref_primary_10_1155_2022_7345547 crossref_primary_10_3390_agriculture12040500 crossref_primary_10_3390_app13148531 crossref_primary_10_1155_2022_4391491 crossref_primary_10_1155_2022_2618940 crossref_primary_10_3390_electronics13183667 crossref_primary_10_1109_ACCESS_2024_3374726 crossref_primary_10_1155_2022_6228513 crossref_primary_10_1155_2022_7862343 crossref_primary_10_1016_j_compag_2023_108033 crossref_primary_10_3390_f13081198 crossref_primary_10_1155_2022_4796075 crossref_primary_10_1155_2022_1879483 crossref_primary_10_3389_fpls_2024_1460654 crossref_primary_10_3389_fpls_2023_1124939 |
| Cites_doi | 10.1049/iet-spr.2019.0481 10.1049/cth2.12118 10.1109/ICICCT.2018.8473209 10.1007/s00034-020-01356-3 10.1016/j.apenergy.2014.09.083 10.1016/S0925-2312(01)00620-8 10.1016/j.apm.2013.06.007 10.48084/etasr.2756 10.3390/e23020219 10.1016/j.jfranklin.2021.04.006 10.1049/iet-cta.2012.0313 10.1016/j.compag.2021.106136 10.1049/iet-cta.2019.0413 10.1016/j.jfranklin.2019.11.003 10.1016/j.compag.2018.12.011 10.1016/j.compag.2016.01.019 10.1016/j.knosys.2020.106523 10.1002/acs.3053 10.1177/1550147719881610 10.1016/j.enbuild.2011.07.020 10.1155/2021/8810046 10.1016/j.compag.2020.105476 10.1007/s11119-018-09624-8 10.1016/j.sigpro.2012.12.013 10.1007/s12555-017-0482-7 10.1049/iet-cta.2012.0171 10.1016/j.jfranklin.2020.08.045 10.15666/aeer/1705_1104511053 10.3390/s19051058 10.1002/acs.3221 10.1016/j.cam.2019.112575 10.1007/s12555-019-0191-5 10.3390/s20051334 10.1007/s10618-013-0312-3 10.1007/s12555-016-0081-z 10.1016/j.jfranklin.2018.01.011 10.1007/s12555-019-0140-3 10.1016/j.simpat.2007.06.001 10.1155/2020/8672431 10.1016/j.apm.2012.04.039 10.7736/KSPE.2019.36.3.239 10.3390/s18093061 10.1109/ACCESS.2019.2933169 10.1002/acs.3203 10.1016/j.sigpro.2014.03.031 10.1016/j.jfranklin.2018.01.052 10.3390/agronomy10091236 10.1016/S0168-1699(98)00008-8 10.3390/app11094001 10.1016/j.compag.2021.106134 10.1007/s11071-017-3594-y 10.1109/LSP.2020.3021925 10.1049/iet-cta.2016.0202 10.1007/s12555-019-0940-5 10.3390/en14061596 10.1002/acs.3113 10.1007/s12555-017-0616-y 10.1016/j.sigpro.2018.01.012 10.1049/iet-cta.2019.0731 10.1007/s11071-020-06041-3 10.1016/j.automatica.2013.12.025 10.1016/j.apm.2012.10.014 10.18653/v1/D15-1166 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
| DOI | 10.3390/agriculture11080802 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Databases ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Agricultural Science Database CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_d41b57224bb4430eaf40cef3b5fffd4a 10_3390_agriculture11080802 |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c421t-d7a17ddb8706e858830d06bd74eeacfa72a81910169b9d8f9856c38f0ce3fd7f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688667300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2077-0472 |
| IngestDate | Tue Oct 14 18:34:54 EDT 2025 Sun Nov 09 09:46:45 EST 2025 Thu Jun 26 17:40:42 EDT 2025 Tue Nov 18 22:20:27 EST 2025 Sat Nov 29 07:15:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-d7a17ddb8706e858830d06bd74eeacfa72a81910169b9d8f9856c38f0ce3fd7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0074-3467 0000-0002-2230-0077 |
| OpenAccessLink | https://doaj.org/article/d41b57224bb4430eaf40cef3b5fffd4a |
| PQID | 2564489951 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d41b57224bb4430eaf40cef3b5fffd4a proquest_miscellaneous_2636479686 proquest_journals_2564489951 crossref_citationtrail_10_3390_agriculture11080802 crossref_primary_10_3390_agriculture11080802 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | (ref_10) 2013; 20 Beverena (ref_29) 2015; 137 Xu (ref_64) 2021; 35 Ogwugwam (ref_2) 2019; 9 Li (ref_17) 2021; 15 Ding (ref_18) 2013; 7 Ding (ref_13) 2021; 358 ref_11 Pan (ref_21) 2020; 14 Ding (ref_23) 2013; 93 Zhang (ref_53) 2020; 257 Ding (ref_55) 2020; 357 Xu (ref_57) 2020; 34 Ding (ref_62) 2020; 18 Xu (ref_15) 2020; 39 Li (ref_25) 2020; 18 Zhou (ref_60) 2020; 27 Ferreira (ref_34) 2002; 43 ref_65 Song (ref_42) 2019; 36 Ding (ref_28) 2016; 10 Jin (ref_47) 2021; 2021 Zhang (ref_59) 2018; 355 Jirapond (ref_3) 2019; 156 Ding (ref_12) 2019; 33 Pan (ref_20) 2017; 15 Ding (ref_24) 2013; 37 Yu (ref_32) 2016; 122 Kksal (ref_1) 2019; 20 Shi (ref_39) 2021; 211 Ding (ref_27) 2013; 37 Berroug (ref_30) 2012; 43 Ding (ref_14) 2018; 355 Zhang (ref_54) 2020; 14 ref_36 Xu (ref_8) 2018; 16 ref_31 Mta (ref_6) 2020; 178 Liu (ref_52) 2014; 50 Xu (ref_61) 2020; 18 Ding (ref_50) 2014; 104 Zhang (ref_4) 2019; 15 Moon (ref_49) 2021; 185 Sun (ref_9) 2019; 17 Kong (ref_66) 2021; 182 Fourati (ref_35) 2007; 15 Dananjayan (ref_5) 2020; 180 Zheng (ref_37) 2019; 7 Zhen (ref_38) 2020; 2020 Linker (ref_33) 1998; 19 ref_45 ref_44 ref_43 Batista (ref_48) 2014; 28 ref_41 Ding (ref_51) 2014; 38 Li (ref_26) 2018; 147 ref_40 Ding (ref_19) 2020; 369 Xu (ref_56) 2020; 14 Zhao (ref_46) 2020; 102 Pan (ref_63) 2018; 16 Ding (ref_22) 2013; 7 Zhang (ref_58) 2017; 89 Li (ref_16) 2021; 35 ref_7 |
| References_xml | – volume: 14 start-page: 455 year: 2020 ident: ref_21 article-title: Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises publication-title: IET Signal Process. doi: 10.1049/iet-spr.2019.0481 – volume: 15 start-page: 1230 year: 2021 ident: ref_17 article-title: Iterative parameter estimation methods for dual-rate sampled-data bilinear systems by means of the data filtering technique publication-title: IET Control Theory Appl. doi: 10.1049/cth2.12118 – ident: ref_11 doi: 10.1109/ICICCT.2018.8473209 – volume: 39 start-page: 4198 year: 2020 ident: ref_15 article-title: A recursive parameter estimation algorithm for modeling signals with multi-frequencies publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-020-01356-3 – volume: 137 start-page: 97 year: 2015 ident: ref_29 article-title: Minimal Heating and Cooling in a Modern Rose Greenhouse publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.083 – volume: 43 start-page: 51 year: 2002 ident: ref_34 article-title: Neural network models in greenhouse air temperature prediction publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00620-8 – volume: 38 start-page: 403 year: 2014 ident: ref_51 article-title: Combined state and least squares parameter estimation algorithms for dynamic systems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.06.007 – volume: 9 start-page: 4377 year: 2019 ident: ref_2 article-title: Applications of artificial intelligence in agriculture: A review publication-title: Eng. Technol. Appl. Sci. Res. doi: 10.48084/etasr.2756 – ident: ref_40 doi: 10.3390/e23020219 – volume: 358 start-page: 5113 year: 2021 ident: ref_13 article-title: Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2021.04.006 – volume: 7 start-page: 176 year: 2013 ident: ref_22 article-title: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2012.0313 – volume: 185 start-page: 106136 year: 2021 ident: ref_49 article-title: Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106136 – volume: 14 start-page: 677 year: 2020 ident: ref_54 article-title: Recursive parameter estimation and its convergence for bilinear systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2019.0413 – volume: 257 start-page: 726 year: 2020 ident: ref_53 article-title: Recursive identification of bilinear time-delay systems through the redundant rule publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2019.11.003 – volume: 156 start-page: 467 year: 2019 ident: ref_3 article-title: IoT and agriculture data analysis for smart farm publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.011 – volume: 122 start-page: 94 year: 2016 ident: ref_32 article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2016.01.019 – volume: 211 start-page: 106523 year: 2021 ident: ref_39 article-title: Parallel deep prediction with covariance intersection fusion on non-stationary time series publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.106523 – volume: 33 start-page: 1601 year: 2019 ident: ref_12 article-title: The innovation algorithms for multivariable state-space models publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3053 – volume: 15 start-page: 155014771988161 year: 2019 ident: ref_4 article-title: Application of big data technology in agricultural internet of things publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147719881610 – volume: 43 start-page: 3027 year: 2012 ident: ref_30 article-title: Thermal performance of a greenhouse with a phase change material north wall publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.07.020 – volume: 2021 start-page: 1 year: 2021 ident: ref_47 article-title: Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/8810046 – volume: 178 start-page: 105476 year: 2020 ident: ref_6 article-title: Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105476 – volume: 20 start-page: 926 year: 2019 ident: ref_1 article-title: Architecture design approach for IoT-based farm management information systems publication-title: Precis. Agric. doi: 10.1007/s11119-018-09624-8 – volume: 93 start-page: 1235 year: 2013 ident: ref_23 article-title: Decomposition based fast least squares algorithm for output error systems publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.12.013 – ident: ref_41 – volume: 16 start-page: 1756 year: 2018 ident: ref_8 article-title: Hierarchical parameter estimation for the frequency response based on the dynamical window data publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-017-0482-7 – volume: 7 start-page: 68 year: 2013 ident: ref_18 article-title: Coupled-least-squares identification for multivariable systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2012.0171 – volume: 357 start-page: 11094 year: 2020 ident: ref_55 article-title: Hierarchical extended least squares estimation approaches for a multi-input multi-output stochastic system with colored noise from observation data publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2020.08.045 – volume: 17 start-page: 17 year: 2019 ident: ref_9 article-title: Ecological agriculture development and spatial and temporal characteristics of carbon emissions of land use publication-title: Appl. Ecol. Environ. Res. doi: 10.15666/aeer/1705_1104511053 – volume: 20 start-page: 419 year: 2013 ident: ref_10 article-title: Use of Artificial neural networks in predicting direct nitrous oxide emissions from agricultural soils publication-title: Ecol. Chem. Eng. – ident: ref_36 doi: 10.3390/s19051058 – volume: 35 start-page: 676 year: 2021 ident: ref_64 article-title: Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3221 – volume: 369 start-page: 112575 year: 2020 ident: ref_19 article-title: Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2019.112575 – volume: 18 start-page: 1581 year: 2020 ident: ref_25 article-title: Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0191-5 – ident: ref_7 doi: 10.3390/s20051334 – volume: 28 start-page: 634 year: 2014 ident: ref_48 article-title: CID: An efficient complexity-invariant distance for time series publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-013-0312-3 – volume: 15 start-page: 1189 year: 2017 ident: ref_20 article-title: A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-016-0081-z – volume: 355 start-page: 3079 year: 2018 ident: ref_59 article-title: Combined state and parameter estimation for a bilinear state space system with moving average noise publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.01.011 – volume: 18 start-page: 886 year: 2020 ident: ref_62 article-title: Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0140-3 – volume: 15 start-page: 1016 year: 2007 ident: ref_35 article-title: A greenhouse control with feed-forward and recurrent neural networks publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2007.06.001 – volume: 2020 start-page: 1 year: 2020 ident: ref_38 article-title: Hybrid deep-learning framework based on gaussian fusion of multiple spatiotemporal networks for walking gait phase recognition publication-title: Complexity doi: 10.1155/2020/8672431 – volume: 37 start-page: 1694 year: 2013 ident: ref_24 article-title: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.04.039 – volume: 36 start-page: 239 year: 2019 ident: ref_42 article-title: Prediction of smart greenhouse temperature-humidity based on multi-dimensional LSTMs publication-title: J. Korean Soc. Precis. Eng. doi: 10.7736/KSPE.2019.36.3.239 – ident: ref_65 doi: 10.3390/s18093061 – volume: 7 start-page: 122740 year: 2019 ident: ref_37 article-title: Probability fusion decision framework of multiple deep neural networks for fine-grained visual classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933169 – volume: 35 start-page: 240 year: 2021 ident: ref_16 article-title: Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3203 – volume: 104 start-page: 369 year: 2014 ident: ref_50 article-title: State filtering and parameter estimation for state space systems with scarce measurements publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.03.031 – volume: 355 start-page: 3737 year: 2018 ident: ref_14 article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2018.01.052 – ident: ref_31 doi: 10.3390/agronomy10091236 – volume: 19 start-page: 289 year: 1998 ident: ref_33 article-title: Optimal CO2 control in a greenhouse modeled with neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/S0168-1699(98)00008-8 – ident: ref_44 doi: 10.3390/app11094001 – volume: 182 start-page: 106134 year: 2021 ident: ref_66 article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106134 – volume: 89 start-page: 2415 year: 2017 ident: ref_58 article-title: Recursive parameter identification of the dynamical models for bilinear state space systems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-017-3594-y – volume: 27 start-page: 1600 year: 2020 ident: ref_60 article-title: Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.3021925 – volume: 10 start-page: 2506 year: 2016 ident: ref_28 article-title: Performance analysis of the generalised projection identification for time-varying systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2016.0202 – volume: 18 start-page: 3167 year: 2020 ident: ref_61 article-title: Separable recursive gradient algorithm for dynamical systems based on the impulse response signals publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0940-5 – ident: ref_43 doi: 10.3390/en14061596 – volume: 34 start-page: 937 year: 2020 ident: ref_57 article-title: Separable multi-innovation stochastic gradient estimation algorithm for the nonlinear dynamic responses of systems publication-title: Int. J. Adapt. Control Signal Process. doi: 10.1002/acs.3113 – volume: 16 start-page: 2878 year: 2018 ident: ref_63 article-title: Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-017-0616-y – volume: 180 start-page: 105895 year: 2020 ident: ref_5 article-title: A survey on the 5G network and its impact on agriculture: Challenges and opportunities publication-title: Comput. Electron. Agric. – volume: 147 start-page: 23 year: 2018 ident: ref_26 article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique publication-title: Signal Process. doi: 10.1016/j.sigpro.2018.01.012 – volume: 14 start-page: 1276 year: 2020 ident: ref_56 article-title: Hierarchical multi-innovation generalised extended stochastic gradient methods for multivariable equation-error autoregressive moving average systems publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2019.0731 – volume: 102 start-page: 1 year: 2020 ident: ref_46 article-title: A health performance evaluation method of multirotors under wind turbulence publication-title: Nonlinear Dyn. doi: 10.1007/s11071-020-06041-3 – volume: 50 start-page: 962 year: 2014 ident: ref_52 article-title: An efficient hierarchical identification method for general dual-rate sampled-data systems publication-title: Automatica doi: 10.1016/j.automatica.2013.12.025 – volume: 37 start-page: 4798 year: 2013 ident: ref_27 article-title: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.10.014 – ident: ref_45 doi: 10.18653/v1/D15-1166 |
| SSID | ssj0000913806 |
| Score | 2.46224 |
| Snippet | Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 802 |
| SubjectTerms | Accuracy Agricultural production agriculture Algorithms Carbon dioxide Coders Controlled conditions Crop growth data collection Deep learning deep-learning encoder–decoder environmental factor prediction Environmental factors Farm buildings Feature extraction Greenhouses Humidity Indoor environments intelligent agricultural greenhouse Internet of Things Mathematical models Microclimate Noise Nonlinear systems Nonlinearity Parameter estimation Photosynthesis prediction Predictions Principal components analysis Radiation self-attention mechanism temperature Time series wavelet |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKCzISR6xNYsdxTqhlW7ESKhUUaW-Rn6VSlXbTbM_7Hzjy7_gleBw3FQLthVuUOJYTj-c93yD0Nit1Kr1qTDJtHWG5SYksSksMzbQnaoAcDyCun4rpVFxclLPocNvGtMo9TwyM2qw1-MhPvWj2lkTpFYL3m0sCXaMguhpbaNxGx4BU5un8eDSezr70XhZAvRQJ7-CGqLfvT-WiiaAWFjLgodT0D5EUkPv_YsxB2kwe_O86H6L7Uc_Ew44wHqFbtn6M7g0Py3qCfp5ZuyERYHWB5x1I1QrPGgjeeFsc75YSj5ad1AsuQ_zVrhwZti3kGO0sHtdQEt_8uv5xZsMVnuyTvbDXhvH55zkZeTlp8PhQUBemqcFHgZc1Pu8xQVsckoC-r6-29in6NhnPP3wksVcD0SxLW2IKmRbGKAibWpELQROTcGUKZj1rd7LIJJiGgP2iSiNcKXKuqXCJttSZwtFn6Khe1_Y5wpRB8Z3LueE5c0IpT0BSaE41lS4vkwHK9ttV6QhkDv00VpU3aGCPq3_s8QC961_adDgeNw8fAR30QwGEO9xYN4sqnunKsFTlhdeBlGKMJlY65j_HUZU75wyTA3SyJ5EqcoZtdaCPAXrTP_ZnGgI1srb-H1cZB1T_kgv-4uYpXqK7GeTYhITEE3TUNlf2Fbqjd-1y27yOh-E3u7YbWA priority: 102 providerName: ProQuest |
| Title | Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse |
| URI | https://www.proquest.com/docview/2564489951 https://www.proquest.com/docview/2636479686 https://doaj.org/article/d41b57224bb4430eaf40cef3b5fffd4a |
| Volume | 11 |
| WOSCitedRecordID | wos000688667300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M0K dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQywEOiF-xUCojccRqEjuxfdylu2LVdolgkcopcmK7rLRKq2y6575Dj7xdn4QZJ7stAsGFSxQ5jmV5xp4Z-5vPhLxLdBUbcI1ZUjnPRGpjZqR2zPKkAqVGyvFA4nosZzN1eqrzO1d9ISasowfuBu7AirhMJRiashSCR854EUGzvEy991YE1yiS-k4wFdZgHXMVZR3NEIe4_sCcNT2ZhUPkO6aY_mKKAmP_bwtysDKTx-RR7x7SYdetJ-Seq5-Sh8PbVp-RH4fOXbCeF_WMzjtuqSXNGzxzgRCarheGjhadsQo7ffSLW3o2bFuEBq0dHdeYyd7cXF0fuvBGJxuMFgUnlk4_zdkIzJul49s8uNBMjVsLdFHT6ZbKs6UBu_P9_HLlnpOvk_H8w0fWX7HAKpHELbPSxNLaEk87nUqV4pGNstJK4WBF9kYmBiM6pGwptVVeqzSruPIgAu6t9PwF2anPa_eSUC4wZ86nmc1S4VVZgtyNqjJeceNTHQ1Ishntour5x_EajGUBcQiKqPiDiAbk_fani45-4-_VRyjGbVXkzg4FoFFFr1HFvzRqQPY2SlD0E3pVgGcIgawGf3RA3m4_w1TE8xVTOxjjIsmQjF9nKnv1P_rxmjxIEEAT0IZ7ZKdtLt0bcr9at4tVs092R-NZ_nk_6D08T6IjKMunJ_m3n87_EYM |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGDhKw4I0oDGAk2GFNEjuJs0Copa2mmk6pRJGGVcbxo1SqkpJmitjxDyz5Bz6KL8E3rwqBZjcLdlHiWIpzfB--956L0Asvkq6wpjHxpDaE-colIow0UdSTFtRAOV6SuE7C6ZSfnkazPfSzqYWBtMpGJpaCWmUSzsgPrWq2nkRkDYI3688EukZBdLVpoVHB4lh__WJdts3r8cD-35eeNxrO3x6RuqsAkcxzC6JC4YZKJRDg09znnDrKCRIVMm2FkBGhJ8CJAZaSJFLcRNwPJOXGkZoaFRpq572C9hmAvYP2Z-OT2cf2VAdYNrkTVPRGlEbOoVjkNYmGhox7KG39QwWWnQL-UgSldhvd-t_W5Ta6WdvRuFcB_w7a0-lddKO3W4Z76MdA6zWpCWQXeF6RcK3wLIfgVJHleLsUuL-stHp5JIrf65UhvaKAHKqtxsMUSv7zX9--D3R5hUdNMhu21j4ev5uTvrUDFB7uCgbLaVI4g8HLFI9bztMCl0lOn7Lzjb6PPlzK6jxAnTRL9UOEKYPiQuMHKvCZ4UliN4jgMqCSCuNHThd5DTxiWRO1Q7-QVWwdNsBU_A9MddGr9qV1xVNy8fA-4K4dCiTj5Y0sX8S1zIoVcxM_tDZekjBGHS0Ms59jaOIbYxQTXXTQQDKuJd8m3uGxi563j63MgkCUSLVd49gLoGtBFPDg0cVTPEPXjuYnk3gynh4_Rtc9yCcqky8PUKfIz_UTdFVui-Umf1pvRIzOLhvjvwHvzXmV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLWGDkKw4I2mMICRYIfVxHYSZ4FQS1tRzVAqUaRhlXH8KJWqtJNmitjxDyz5Ez6HL8E3j1YINLtZsIsSx1Kc4_v2uQg9p7HypTONCVXGEh5on8goNkQzqhyogXK8JHE9jsZjcXIST_bQz-YsDJRVNjKxFNR6qSBG3nGq2XkSsTMIOrYui5j0h69XZwQ6SEGmtWmnUUHkyHz94ty39atR3_3rF5QOB9M3b0ndYYAoTv2C6Ej6kdYpJPuMCIRgnvbCVEfcOIFkZUQlODTAWJLGWthYBKFiwnrKMKsjy9y8V9C-M8k5baH9yejd5NM2wgOMm8ILK6ojxmKvI2d5TahhoPoejrn-oQ7LrgF_KYVS0w1v_c9rdBvdrO1r3K02xB20Z7K76EZ3tyT30I--MStSE8vO8LQi51rgSQ5Jq2KZ481c4t680vZlqBR_MAtLukUBtVUbgwcZUAHkv75975vyCg-bIjfsvAA8ej8lPWcfaDzYHSQsp8kgNoPnGR5tuVALXBY_fV6er8199PFSVucBamXLzBwgzDgcOrRBqMOAW5GmbuNIoUKmmLRB7LURbaCSqJrAHfqILBLnyAG-kn_gq41ebl9aVfwlFw_vAQa3Q4F8vLyxzGdJLcsSzf00iJztl6acM89Iy93nWJYG1lrNZRsdNvBMaom4TnbYbKNn28dOlkGCSmbGrXFCQ-hmEIcifHjxFE_RNQfs5Hg0PnqErlMoMyprMg9Rq8jPzWN0VW2K-Tp_Uu9JjE4vG-K_ARWCglU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Temporal+Predictor+via+Bidirectional+Self-Attentive+Encoder%E2%80%93Decoder+Framework+for+IOT-Based+Environmental+Sensing+in+Intelligent+Greenhouse&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jin%2C+Xue-Bo&rft.au=Zheng%2C+Wei-Zhen&rft.au=Kong%2C+Jian-Lei&rft.au=Wang%2C+Xiao-Yi&rft.date=2021-08-01&rft.issn=2077-0472&rft.eissn=2077-0472&rft.volume=11&rft.issue=8&rft_id=info:doi/10.3390%2Fagriculture11080802&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |