Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse

Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic tempora...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Agriculture (Basel) Ročník 11; číslo 8; s. 802
Hlavní autoři: Jin, Xue-Bo, Zheng, Wei-Zhen, Kong, Jian-Lei, Wang, Xiao-Yi, Zuo, Min, Zhang, Qing-Chuan, Lin, Seng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2021
Témata:
ISSN:2077-0472, 2077-0472
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses.
AbstractList Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO2) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO2 concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses.
Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal crop growth and management efficiency. Due to the limitations of existing predictors in dealing with massive, nonlinear, and dynamic temporal data, this study proposes a bidirectional self-attentive encoder–decoder framework (BEDA) to construct the long-time predictor for multiple environmental factors with high nonlinearity and noise in a smart greenhouse. Firstly, the original data are denoised by wavelet threshold filter and pretreatment operations. Secondly, the bidirectional long short-term-memory is selected as the fundamental unit to extract time-serial features. Then, the multi-head self-attention mechanism is incorporated into the encoder–decoder framework to improve the prediction performance. Experimental investigations are conducted in a practical greenhouse to accurately predict indoor environmental factors (temperature, humidity, and CO₂) from noisy IoT-based sensors. The best model for all datasets was the proposed BEDA method, with the root mean square error of three factors’ prediction reduced to 2.726, 3.621, and 49.817, and with an R of 0.749 for temperature, 0.848 for humidity, and 0.8711 for CO₂ concentration, respectively. The experimental results show that the favorable prediction accuracy, robustness, and generalization of the proposed method make it suitable to more precisely manage greenhouses.
Author Jin, Xue-Bo
Zuo, Min
Lin, Seng
Wang, Xiao-Yi
Zhang, Qing-Chuan
Zheng, Wei-Zhen
Kong, Jian-Lei
Author_xml – sequence: 1
  givenname: Xue-Bo
  orcidid: 0000-0002-2230-0077
  surname: Jin
  fullname: Jin, Xue-Bo
– sequence: 2
  givenname: Wei-Zhen
  surname: Zheng
  fullname: Zheng, Wei-Zhen
– sequence: 3
  givenname: Jian-Lei
  orcidid: 0000-0002-0074-3467
  surname: Kong
  fullname: Kong, Jian-Lei
– sequence: 4
  givenname: Xiao-Yi
  surname: Wang
  fullname: Wang, Xiao-Yi
– sequence: 5
  givenname: Min
  surname: Zuo
  fullname: Zuo, Min
– sequence: 6
  givenname: Qing-Chuan
  surname: Zhang
  fullname: Zhang, Qing-Chuan
– sequence: 7
  givenname: Seng
  surname: Lin
  fullname: Lin, Seng
BookMark eNp9ks-O0zAQxiO0SCzLPgGXSFy4BOzYiZ3j_qdSpUWinC3HHheXxC4TpytuvANH3o4nwW1BQiuEffDI832_0djzvDgJMUBRvKTkDWMdeavX6M08pBmBUiLzrp8UpzURoiJc1Cd_xc-K82nakLw6yiRpT4sf1wDbagkagw_rcgXjNqIeyvcI1psUsdx5XV566xFM8jHk3AcYXHWREoTkd1DeBBMt4M9v36_hEJW3qEd4iPi5dBmwuF9Vl3oCm5U7jzGM2XjAhGlf04dyERIMg1_nRHmHAOFTnCd4UTx1epjg_Pd5Vny8vVldvauW93eLq4tlZXhNU2WFpsLaXgrSgmykZMSStreCA2jjtKi1pB0ltO36zkrXyaY1TDpigDkrHDsrFkeujXqjtuhHjV9V1F4dLiKulcbkzQDKcto3oq5533POCGjHM8axvnHOWa4z6_WRtcX4ZYYpqdFPJjenA-SeVN2ylouulW2Wvnok3cQZ8wNnVdNyLruuoVnVHVUG4zQhOGV80vufSKj9oChR-ylQ_5iC7GWPvH-a-5_rF7HSwAk
CitedBy_id crossref_primary_10_1155_2022_2631693
crossref_primary_10_1155_2022_4379317
crossref_primary_10_3390_info14080451
crossref_primary_10_3390_agronomy12030591
crossref_primary_10_1155_2022_1504454
crossref_primary_10_1155_2022_6260395
crossref_primary_10_1155_2021_1194565
crossref_primary_10_3390_app12136396
crossref_primary_10_1155_2022_9433661
crossref_primary_10_1016_j_compag_2025_110603
crossref_primary_10_3390_mi14020440
crossref_primary_10_3390_e24030360
crossref_primary_10_1007_s11036_023_02256_x
crossref_primary_10_1155_2022_5985733
crossref_primary_10_1155_2022_2914571
crossref_primary_10_1155_2022_3511535
crossref_primary_10_1109_ACCESS_2023_3285242
crossref_primary_10_1155_2022_1061569
crossref_primary_10_3390_mi13091427
crossref_primary_10_1155_2022_9519274
crossref_primary_10_3390_math10040610
crossref_primary_10_3390_foods11121690
crossref_primary_10_1016_j_apenergy_2025_125341
crossref_primary_10_1016_j_scitotenv_2023_164858
crossref_primary_10_1155_2022_3781859
crossref_primary_10_1155_2022_8434966
crossref_primary_10_3390_agriculture13030567
crossref_primary_10_1080_02286203_2025_2478997
crossref_primary_10_3390_horticulturae9080853
crossref_primary_10_3390_foods11071061
crossref_primary_10_3390_e24030335
crossref_primary_10_1155_2022_6048297
crossref_primary_10_3390_app12073602
crossref_primary_10_3390_electronics13173484
crossref_primary_10_1016_j_compag_2023_108537
crossref_primary_10_1155_2022_2387016
crossref_primary_10_1155_2022_7773259
crossref_primary_10_3390_agronomy13030625
crossref_primary_10_3390_s24103258
crossref_primary_10_32604_cmes_2022_019244
crossref_primary_10_1155_2022_3672905
crossref_primary_10_1155_2022_7512692
crossref_primary_10_1155_2021_7849255
crossref_primary_10_3390_machines10111076
crossref_primary_10_1155_2022_2794889
crossref_primary_10_1155_2022_1212527
crossref_primary_10_1155_2022_5028866
crossref_primary_10_1155_2022_6993515
crossref_primary_10_1155_2022_4162998
crossref_primary_10_1155_2022_2783792
crossref_primary_10_1155_2022_7345547
crossref_primary_10_3390_agriculture12040500
crossref_primary_10_3390_app13148531
crossref_primary_10_1155_2022_4391491
crossref_primary_10_1155_2022_2618940
crossref_primary_10_3390_electronics13183667
crossref_primary_10_1109_ACCESS_2024_3374726
crossref_primary_10_1155_2022_6228513
crossref_primary_10_1155_2022_7862343
crossref_primary_10_1016_j_compag_2023_108033
crossref_primary_10_3390_f13081198
crossref_primary_10_1155_2022_4796075
crossref_primary_10_1155_2022_1879483
crossref_primary_10_3389_fpls_2024_1460654
crossref_primary_10_3389_fpls_2023_1124939
Cites_doi 10.1049/iet-spr.2019.0481
10.1049/cth2.12118
10.1109/ICICCT.2018.8473209
10.1007/s00034-020-01356-3
10.1016/j.apenergy.2014.09.083
10.1016/S0925-2312(01)00620-8
10.1016/j.apm.2013.06.007
10.48084/etasr.2756
10.3390/e23020219
10.1016/j.jfranklin.2021.04.006
10.1049/iet-cta.2012.0313
10.1016/j.compag.2021.106136
10.1049/iet-cta.2019.0413
10.1016/j.jfranklin.2019.11.003
10.1016/j.compag.2018.12.011
10.1016/j.compag.2016.01.019
10.1016/j.knosys.2020.106523
10.1002/acs.3053
10.1177/1550147719881610
10.1016/j.enbuild.2011.07.020
10.1155/2021/8810046
10.1016/j.compag.2020.105476
10.1007/s11119-018-09624-8
10.1016/j.sigpro.2012.12.013
10.1007/s12555-017-0482-7
10.1049/iet-cta.2012.0171
10.1016/j.jfranklin.2020.08.045
10.15666/aeer/1705_1104511053
10.3390/s19051058
10.1002/acs.3221
10.1016/j.cam.2019.112575
10.1007/s12555-019-0191-5
10.3390/s20051334
10.1007/s10618-013-0312-3
10.1007/s12555-016-0081-z
10.1016/j.jfranklin.2018.01.011
10.1007/s12555-019-0140-3
10.1016/j.simpat.2007.06.001
10.1155/2020/8672431
10.1016/j.apm.2012.04.039
10.7736/KSPE.2019.36.3.239
10.3390/s18093061
10.1109/ACCESS.2019.2933169
10.1002/acs.3203
10.1016/j.sigpro.2014.03.031
10.1016/j.jfranklin.2018.01.052
10.3390/agronomy10091236
10.1016/S0168-1699(98)00008-8
10.3390/app11094001
10.1016/j.compag.2021.106134
10.1007/s11071-017-3594-y
10.1109/LSP.2020.3021925
10.1049/iet-cta.2016.0202
10.1007/s12555-019-0940-5
10.3390/en14061596
10.1002/acs.3113
10.1007/s12555-017-0616-y
10.1016/j.sigpro.2018.01.012
10.1049/iet-cta.2019.0731
10.1007/s11071-020-06041-3
10.1016/j.automatica.2013.12.025
10.1016/j.apm.2012.10.014
10.18653/v1/D15-1166
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture11080802
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Agricultural Science Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_d41b57224bb4430eaf40cef3b5fffd4a
10_3390_agriculture11080802
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
ID FETCH-LOGICAL-c421t-d7a17ddb8706e858830d06bd74eeacfa72a81910169b9d8f9856c38f0ce3fd7f3
IEDL.DBID DOA
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000688667300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2077-0472
IngestDate Tue Oct 14 18:34:54 EDT 2025
Sun Nov 09 09:46:45 EST 2025
Thu Jun 26 17:40:42 EDT 2025
Tue Nov 18 22:20:27 EST 2025
Sat Nov 29 07:15:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-d7a17ddb8706e858830d06bd74eeacfa72a81910169b9d8f9856c38f0ce3fd7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0074-3467
0000-0002-2230-0077
OpenAccessLink https://doaj.org/article/d41b57224bb4430eaf40cef3b5fffd4a
PQID 2564489951
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_d41b57224bb4430eaf40cef3b5fffd4a
proquest_miscellaneous_2636479686
proquest_journals_2564489951
crossref_citationtrail_10_3390_agriculture11080802
crossref_primary_10_3390_agriculture11080802
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References (ref_10) 2013; 20
Beverena (ref_29) 2015; 137
Xu (ref_64) 2021; 35
Ogwugwam (ref_2) 2019; 9
Li (ref_17) 2021; 15
Ding (ref_18) 2013; 7
Ding (ref_13) 2021; 358
ref_11
Pan (ref_21) 2020; 14
Ding (ref_23) 2013; 93
Zhang (ref_53) 2020; 257
Ding (ref_55) 2020; 357
Xu (ref_57) 2020; 34
Ding (ref_62) 2020; 18
Xu (ref_15) 2020; 39
Li (ref_25) 2020; 18
Zhou (ref_60) 2020; 27
Ferreira (ref_34) 2002; 43
ref_65
Song (ref_42) 2019; 36
Ding (ref_28) 2016; 10
Jin (ref_47) 2021; 2021
Zhang (ref_59) 2018; 355
Jirapond (ref_3) 2019; 156
Ding (ref_12) 2019; 33
Pan (ref_20) 2017; 15
Ding (ref_24) 2013; 37
Yu (ref_32) 2016; 122
Kksal (ref_1) 2019; 20
Shi (ref_39) 2021; 211
Ding (ref_27) 2013; 37
Berroug (ref_30) 2012; 43
Ding (ref_14) 2018; 355
Zhang (ref_54) 2020; 14
ref_36
Xu (ref_8) 2018; 16
ref_31
Mta (ref_6) 2020; 178
Liu (ref_52) 2014; 50
Xu (ref_61) 2020; 18
Ding (ref_50) 2014; 104
Zhang (ref_4) 2019; 15
Moon (ref_49) 2021; 185
Sun (ref_9) 2019; 17
Kong (ref_66) 2021; 182
Fourati (ref_35) 2007; 15
Dananjayan (ref_5) 2020; 180
Zheng (ref_37) 2019; 7
Zhen (ref_38) 2020; 2020
Linker (ref_33) 1998; 19
ref_45
ref_44
ref_43
Batista (ref_48) 2014; 28
ref_41
Ding (ref_51) 2014; 38
Li (ref_26) 2018; 147
ref_40
Ding (ref_19) 2020; 369
Xu (ref_56) 2020; 14
Zhao (ref_46) 2020; 102
Pan (ref_63) 2018; 16
Ding (ref_22) 2013; 7
Zhang (ref_58) 2017; 89
Li (ref_16) 2021; 35
ref_7
References_xml – volume: 14
  start-page: 455
  year: 2020
  ident: ref_21
  article-title: Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2019.0481
– volume: 15
  start-page: 1230
  year: 2021
  ident: ref_17
  article-title: Iterative parameter estimation methods for dual-rate sampled-data bilinear systems by means of the data filtering technique
  publication-title: IET Control Theory Appl.
  doi: 10.1049/cth2.12118
– ident: ref_11
  doi: 10.1109/ICICCT.2018.8473209
– volume: 39
  start-page: 4198
  year: 2020
  ident: ref_15
  article-title: A recursive parameter estimation algorithm for modeling signals with multi-frequencies
  publication-title: Circuits Syst. Signal Process.
  doi: 10.1007/s00034-020-01356-3
– volume: 137
  start-page: 97
  year: 2015
  ident: ref_29
  article-title: Minimal Heating and Cooling in a Modern Rose Greenhouse
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.083
– volume: 43
  start-page: 51
  year: 2002
  ident: ref_34
  article-title: Neural network models in greenhouse air temperature prediction
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00620-8
– volume: 38
  start-page: 403
  year: 2014
  ident: ref_51
  article-title: Combined state and least squares parameter estimation algorithms for dynamic systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.06.007
– volume: 9
  start-page: 4377
  year: 2019
  ident: ref_2
  article-title: Applications of artificial intelligence in agriculture: A review
  publication-title: Eng. Technol. Appl. Sci. Res.
  doi: 10.48084/etasr.2756
– ident: ref_40
  doi: 10.3390/e23020219
– volume: 358
  start-page: 5113
  year: 2021
  ident: ref_13
  article-title: Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2021.04.006
– volume: 7
  start-page: 176
  year: 2013
  ident: ref_22
  article-title: Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2012.0313
– volume: 185
  start-page: 106136
  year: 2021
  ident: ref_49
  article-title: Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106136
– volume: 14
  start-page: 677
  year: 2020
  ident: ref_54
  article-title: Recursive parameter estimation and its convergence for bilinear systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2019.0413
– volume: 257
  start-page: 726
  year: 2020
  ident: ref_53
  article-title: Recursive identification of bilinear time-delay systems through the redundant rule
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2019.11.003
– volume: 156
  start-page: 467
  year: 2019
  ident: ref_3
  article-title: IoT and agriculture data analysis for smart farm
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.011
– volume: 122
  start-page: 94
  year: 2016
  ident: ref_32
  article-title: Prediction of the temperature in a Chinese solar greenhouse based on LSSVM optimized by improved PSO
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2016.01.019
– volume: 211
  start-page: 106523
  year: 2021
  ident: ref_39
  article-title: Parallel deep prediction with covariance intersection fusion on non-stationary time series
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.106523
– volume: 33
  start-page: 1601
  year: 2019
  ident: ref_12
  article-title: The innovation algorithms for multivariable state-space models
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3053
– volume: 15
  start-page: 155014771988161
  year: 2019
  ident: ref_4
  article-title: Application of big data technology in agricultural internet of things
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147719881610
– volume: 43
  start-page: 3027
  year: 2012
  ident: ref_30
  article-title: Thermal performance of a greenhouse with a phase change material north wall
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.07.020
– volume: 2021
  start-page: 1
  year: 2021
  ident: ref_47
  article-title: Modeling and Analysis of Data-Driven Systems through Computational Neuroscience Wavelet-Deep Optimized Model for Nonlinear Multicomponent Data Forecasting
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/8810046
– volume: 178
  start-page: 105476
  year: 2020
  ident: ref_6
  article-title: Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105476
– volume: 20
  start-page: 926
  year: 2019
  ident: ref_1
  article-title: Architecture design approach for IoT-based farm management information systems
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-018-09624-8
– volume: 93
  start-page: 1235
  year: 2013
  ident: ref_23
  article-title: Decomposition based fast least squares algorithm for output error systems
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.12.013
– ident: ref_41
– volume: 16
  start-page: 1756
  year: 2018
  ident: ref_8
  article-title: Hierarchical parameter estimation for the frequency response based on the dynamical window data
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-017-0482-7
– volume: 7
  start-page: 68
  year: 2013
  ident: ref_18
  article-title: Coupled-least-squares identification for multivariable systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2012.0171
– volume: 357
  start-page: 11094
  year: 2020
  ident: ref_55
  article-title: Hierarchical extended least squares estimation approaches for a multi-input multi-output stochastic system with colored noise from observation data
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2020.08.045
– volume: 17
  start-page: 17
  year: 2019
  ident: ref_9
  article-title: Ecological agriculture development and spatial and temporal characteristics of carbon emissions of land use
  publication-title: Appl. Ecol. Environ. Res.
  doi: 10.15666/aeer/1705_1104511053
– volume: 20
  start-page: 419
  year: 2013
  ident: ref_10
  article-title: Use of Artificial neural networks in predicting direct nitrous oxide emissions from agricultural soils
  publication-title: Ecol. Chem. Eng.
– ident: ref_36
  doi: 10.3390/s19051058
– volume: 35
  start-page: 676
  year: 2021
  ident: ref_64
  article-title: Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3221
– volume: 369
  start-page: 112575
  year: 2020
  ident: ref_19
  article-title: Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2019.112575
– volume: 18
  start-page: 1581
  year: 2020
  ident: ref_25
  article-title: Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0191-5
– ident: ref_7
  doi: 10.3390/s20051334
– volume: 28
  start-page: 634
  year: 2014
  ident: ref_48
  article-title: CID: An efficient complexity-invariant distance for time series
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-013-0312-3
– volume: 15
  start-page: 1189
  year: 2017
  ident: ref_20
  article-title: A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-016-0081-z
– volume: 355
  start-page: 3079
  year: 2018
  ident: ref_59
  article-title: Combined state and parameter estimation for a bilinear state space system with moving average noise
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.01.011
– volume: 18
  start-page: 886
  year: 2020
  ident: ref_62
  article-title: Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0140-3
– volume: 15
  start-page: 1016
  year: 2007
  ident: ref_35
  article-title: A greenhouse control with feed-forward and recurrent neural networks
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2007.06.001
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Hybrid deep-learning framework based on gaussian fusion of multiple spatiotemporal networks for walking gait phase recognition
  publication-title: Complexity
  doi: 10.1155/2020/8672431
– volume: 37
  start-page: 1694
  year: 2013
  ident: ref_24
  article-title: Hierarchical multi-innovation stochastic gradient algorithm for Hammerstein nonlinear system modeling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.04.039
– volume: 36
  start-page: 239
  year: 2019
  ident: ref_42
  article-title: Prediction of smart greenhouse temperature-humidity based on multi-dimensional LSTMs
  publication-title: J. Korean Soc. Precis. Eng.
  doi: 10.7736/KSPE.2019.36.3.239
– ident: ref_65
  doi: 10.3390/s18093061
– volume: 7
  start-page: 122740
  year: 2019
  ident: ref_37
  article-title: Probability fusion decision framework of multiple deep neural networks for fine-grained visual classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933169
– volume: 35
  start-page: 240
  year: 2021
  ident: ref_16
  article-title: Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3203
– volume: 104
  start-page: 369
  year: 2014
  ident: ref_50
  article-title: State filtering and parameter estimation for state space systems with scarce measurements
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.03.031
– volume: 355
  start-page: 3737
  year: 2018
  ident: ref_14
  article-title: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation
  publication-title: J. Frankl. Inst.
  doi: 10.1016/j.jfranklin.2018.01.052
– ident: ref_31
  doi: 10.3390/agronomy10091236
– volume: 19
  start-page: 289
  year: 1998
  ident: ref_33
  article-title: Optimal CO2 control in a greenhouse modeled with neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/S0168-1699(98)00008-8
– ident: ref_44
  doi: 10.3390/app11094001
– volume: 182
  start-page: 106134
  year: 2021
  ident: ref_66
  article-title: Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106134
– volume: 89
  start-page: 2415
  year: 2017
  ident: ref_58
  article-title: Recursive parameter identification of the dynamical models for bilinear state space systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-017-3594-y
– volume: 27
  start-page: 1600
  year: 2020
  ident: ref_60
  article-title: Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.3021925
– volume: 10
  start-page: 2506
  year: 2016
  ident: ref_28
  article-title: Performance analysis of the generalised projection identification for time-varying systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.0202
– volume: 18
  start-page: 3167
  year: 2020
  ident: ref_61
  article-title: Separable recursive gradient algorithm for dynamical systems based on the impulse response signals
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0940-5
– ident: ref_43
  doi: 10.3390/en14061596
– volume: 34
  start-page: 937
  year: 2020
  ident: ref_57
  article-title: Separable multi-innovation stochastic gradient estimation algorithm for the nonlinear dynamic responses of systems
  publication-title: Int. J. Adapt. Control Signal Process.
  doi: 10.1002/acs.3113
– volume: 16
  start-page: 2878
  year: 2018
  ident: ref_63
  article-title: Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-017-0616-y
– volume: 180
  start-page: 105895
  year: 2020
  ident: ref_5
  article-title: A survey on the 5G network and its impact on agriculture: Challenges and opportunities
  publication-title: Comput. Electron. Agric.
– volume: 147
  start-page: 23
  year: 2018
  ident: ref_26
  article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.01.012
– volume: 14
  start-page: 1276
  year: 2020
  ident: ref_56
  article-title: Hierarchical multi-innovation generalised extended stochastic gradient methods for multivariable equation-error autoregressive moving average systems
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2019.0731
– volume: 102
  start-page: 1
  year: 2020
  ident: ref_46
  article-title: A health performance evaluation method of multirotors under wind turbulence
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06041-3
– volume: 50
  start-page: 962
  year: 2014
  ident: ref_52
  article-title: An efficient hierarchical identification method for general dual-rate sampled-data systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.12.025
– volume: 37
  start-page: 4798
  year: 2013
  ident: ref_27
  article-title: Two-stage least squares based iterative estimation algorithm for CARARMA system modeling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.10.014
– ident: ref_45
  doi: 10.18653/v1/D15-1166
SSID ssj0000913806
Score 2.46224
Snippet Smart agricultural greenhouses provide well-controlled conditions for crop cultivation but require accurate prediction of environmental factors to ensure ideal...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 802
SubjectTerms Accuracy
Agricultural production
agriculture
Algorithms
Carbon dioxide
Coders
Controlled conditions
Crop growth
data collection
Deep learning
deep-learning encoder–decoder
environmental factor prediction
Environmental factors
Farm buildings
Feature extraction
Greenhouses
Humidity
Indoor environments
intelligent agricultural greenhouse
Internet of Things
Mathematical models
Microclimate
Noise
Nonlinear systems
Nonlinearity
Parameter estimation
Photosynthesis
prediction
Predictions
Principal components analysis
Radiation
self-attention mechanism
temperature
Time series
wavelet
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZglwMceCMKCzISR6xN4sRxTqhlW7ESKhUUaW-RHdulUpV202zP-x848u_4Jcw4bioE2gu3PBzLscfzns-EvDUCyEJFBXNaOpamhjMtEsPixGROZHCvfKHwp3w6lRcXxSw43LYhrXLPEz2jNusKfeSnIJrBkihAIXi_uWR4ahRGV8MRGrfJMSKVAZ0fj8bT2Zfey4KolzISHdwQB_v-VC2aAGphMQMeS03_EEkeuf8vxuylzeTB_47zIbkf9Ew67AjjEbll68fk3vAwrCfk55m1GxYAVhd03oFUreisweAN2OJ0t1R0tOyknncZ0q925diwbTHHaGfpuMaS-ObX9Y8z66_oZJ_sRUEbpuef52wEctLQ8aGgzndTo4-CLmt63mOCttQnAX1fX23tU_JtMp5_-MjCWQ2sSpO4ZSZXcW6MxrCplZmUPDKR0CZPLbB2p_JEoWmI2C-6MNIVMhMVly6qLHcmd_wZOarXtX1OKC-UykxWuQymMhextqBFghYIvTheVXpAkv1ylVUAMsfzNFYlGDS4xuU_1nhA3vUfbTocj5ubj5AO-qYIwu0frJtFGfZ0adJYZznoQFqnKY-scin8juM6c86ZVA3IyZ5EysAZtuWBPgbkTf8a9jQGalRtYY7LRCCqfyGkeHFzFy_J3QRzbHxC4gk5apsr-4rcqXbtctu8DpvhN0iAHHA
  priority: 102
  providerName: ProQuest
Title Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse
URI https://www.proquest.com/docview/2564489951
https://www.proquest.com/docview/2636479686
https://doaj.org/article/d41b57224bb4430eaf40cef3b5fffd4a
Volume 11
WOSCitedRecordID wos000688667300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: M0K
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2077-0472
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913806
  issn: 2077-0472
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQywEOiF-xUCojccRqEv_muEt3xartEsEilVNkx3ZZaZVW2XTPfYceebs-CWMnuy0CwYVLlDiJZXnGnm_smc8IvbMC1EInOfFGecKYpcSIzJI0s9wLDs86Jgofy9lMnZ7mxZ2jvkJMWEcP3HXcgWWp4RIMjTGM0cRpz5LKeWq4996yCI0Smd9xpuIcnKdUJaKjGaLg1x_os6Yns3Ah8j2kmP5iiiJj_28TcrQyk8foUQ8P8bBr1hN0z9VP0cPhba3P0I9D5y5Iz4t6hucdt9QSF03YcwEXGq8XGo8WnbGKK334i1t6MmzbEBq0dnhch0z25ubq-tDFOzzZxGhhALF4-mlORmDeLB7f5sHFauqwtIAXNZ5uqTxbHGN3vp9frtxz9HUynn_4SPojFkjFsrQlVupUWmvCbqdTXCma2EQYK5mDGdlrmeng0QXKFpNb5XPFRUWVBxFQb6WnL9BOfV67lwjTXGtueeU5F0yK1DgAfwDeoBZPq8oMULbp7bLq-cfDMRjLEvyQIKLyDyIaoPfbny46-o2_fz4KYtx-GrizYwFoVNlrVPkvjRqgvY0SlP2AXpWADMGRzQGPDtDb7WsYimF_RdcO-rjMRCDjz4USr_5HO16jB1kIoInRhntop20u3Rt0v1q3i1Wzj3ZH41nxeT_qPVxPkiMoK6Ynxbefc5YSmw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXSTgwBtRWMBIcMPaJM7zgFBLW2213VKJIi2nrB3bpVKVlDRbxI3_wJH_wI_il-DJq0Kgve2BW54jZfxlZmzPfAPwQvoGFtyKqBahpq4rGRW-I6ntSE_7njnnZaHwJJhOw9PTaLYHP5taGEyrbGxiaahlluAa-aFxzWYmEZmA4M36M8WuUbi72rTQqGBxrL5-MVO2zevxwIzvS8cZDedvj2jdVYAmrmMXVAbcDqQUuMGnQi8MmSUtX8jAVcYIaR44HCcxyFIiIhnqKPT8hIXaShTTMtDMyL0C-y6CvQP7s_HJ7GO7qoMsm6HlV_RGjEXWIV_kNYmGwox7LG39wwWWnQL-cgSldxvd-t_0chtu1nE06VXAvwN7Kr0LN3o7NdyDHwOl1rQmkF2QeUXCtSKzHDeniiwn2yUn_WXl1cslUfJerTTtFQXmUG0VGaZY8p__-vZ9oMojMmqS2YiJ9sn43Zz2TRwgyXBXMFiKSXENhixTMm45TwtSJjl9ys436j58uBTtPIBOmqXqIRAWce5JL9GeGbrAt4UyUbKJco0UzZJEdMFp4BEnNVE79gtZxWbChpiK_4GpLrxqX1pXPCUXP95H3LWPIsl4eSHLF3Fts2Lp2sILTIwnhOsyS3Htms_RTHhaa-nyLhw0kIxry7eJd3jswvP2trFZuBHFU2V0HDs-di2I_NB_dLGIZ3DtaH4yiSfj6fFjuO5gPlGZfHkAnSI_V0_garItlpv8af0jEji7bIz_Bm-ueq0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgjeiMICRYIfVNM5zgVBLW1HNUCoxSMMqY8d2qVSlJc0UseMfWPInfA5fwr15tEKg2c2CXR6OpdjH9-XrcwGe6QBhIZ2YWxVZ7nlacBW4mndd7dvAx3tZHhQ-CieT6OQknu7Bz-YsDKVVNjKxFNR6mVKMvIOqGT2JGA2Cjq3TIqaD0avVZ04VpGintSmnUUHk0Hz9gu7b-uV4gHP93HVHw-PXb3hdYYCnntstuA5lN9Ra0WafifwoEo52AqVDz6BAsjJ0JTk0xFiiYh3ZOPKDVETWSY2wOrQC-70E-2iSe24L9qfjt9OP2wgPMW5GTlBRHQkROx05y2tCDUPZ93TM9Q91WFYN-EsplJpudON_HqObcL22r1mvWhC3YM9kt-Fabzckd-DHwJgVr4llZ-y4IudasGlOm1bFMmebuWT9eaXty1Ape28WlveKgnKrNoYNM6ICyH99-z4w5RUbNUluDL0ANn53zPtoH2g23B0kLLvJKDbD5hkbb7lQC1YmP31anq3NXfhwIaNzD1rZMjP3gYlYSl_7qfVxGsOgqwxaz2j9Yi9WpKlqg9tAJUlrAneqI7JI0JEjfCX_wFcbXmw_WlX8Jec37xMGt02JfLx8sMxnSS3LEu11lR-i7aeU5wnHSOvh71ihfGut9mQbDhp4JrVEXCc7bLbh6fY1yjLaoJKZwTFO3ICqGcRBFDw4v4sncAWBnRyNJ4cP4apLaUZlTuYBtIr8zDyCy-mmmK_zx_WaZHB60RD_DaFEg20
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-Learning+Temporal+Predictor+via+Bidirectional+Self-Attentive+Encoder%E2%80%93Decoder+Framework+for+IOT-Based+Environmental+Sensing+in+Intelligent+Greenhouse&rft.jtitle=Agriculture+%28Basel%29&rft.au=Xue-Bo+Jin&rft.au=Wei-Zhen+Zheng&rft.au=Jian-Lei+Kong&rft.au=Xiao-Yi+Wang&rft.date=2021-08-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=11&rft.issue=8&rft.spage=802&rft_id=info:doi/10.3390%2Fagriculture11080802&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d41b57224bb4430eaf40cef3b5fffd4a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon