Constrained Multilinear Detection and Generalized Graph Motifs
We introduce a new algebraic sieving technique to detect constrained multilinear monomials in multivariate polynomial generating functions given by an evaluation oracle. The polynomials are assumed to have coefficients from a field of characteristic two. As applications of the technique, we show an...
Uloženo v:
| Vydáno v: | Algorithmica Ročník 74; číslo 2; s. 947 - 967 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.02.2016
|
| Témata: | |
| ISSN: | 0178-4617, 1432-0541, 1432-0541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We introduce a new algebraic sieving technique to detect constrained multilinear monomials in multivariate polynomial generating functions given by an evaluation oracle. The polynomials are assumed to have coefficients from a field of characteristic two. As applications of the technique, we show an
O
∗
(
2
k
)
-time polynomial space algorithm for the
k
-sized
Graph Motif
problem. We also introduce a new optimization variant of the problem, called
Closest Graph Motif
and solve it within the same time bound. The
Closest Graph Motif
problem encompasses several previously studied optimization variants, like
Maximum Graph Motif
,
Min
-
Substitute Graph Motif
, and
Min
-
Add Graph Motif
. Finally, we provide a piece of evidence that our result might be essentially tight: the existence of an
O
∗
(
(
2
-
ϵ
)
k
)
-time algorithm for the
Graph Motif
problem implies an
O
(
(
2
-
ϵ
′
)
n
)
-time algorithm for
Set Cover
. |
|---|---|
| ISSN: | 0178-4617 1432-0541 1432-0541 |
| DOI: | 10.1007/s00453-015-9981-1 |