Constrained Multilinear Detection and Generalized Graph Motifs

We introduce a new algebraic sieving technique to detect constrained multilinear monomials in multivariate polynomial generating functions given by an evaluation oracle. The polynomials are assumed to have coefficients from a field of characteristic two. As applications of the technique, we show an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 74; číslo 2; s. 947 - 967
Hlavní autoři: Björklund, Andreas, Kaski, Petteri, Kowalik, Łukasz
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.02.2016
Témata:
ISSN:0178-4617, 1432-0541, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce a new algebraic sieving technique to detect constrained multilinear monomials in multivariate polynomial generating functions given by an evaluation oracle. The polynomials are assumed to have coefficients from a field of characteristic two. As applications of the technique, we show an O ∗ ( 2 k ) -time polynomial space algorithm for the k -sized Graph Motif problem. We also introduce a new optimization variant of the problem, called Closest Graph Motif and solve it within the same time bound. The Closest Graph Motif problem encompasses several previously studied optimization variants, like Maximum Graph Motif , Min - Substitute Graph Motif , and Min - Add Graph Motif . Finally, we provide a piece of evidence that our result might be essentially tight: the existence of an O ∗ ( ( 2 - ϵ ) k ) -time algorithm for the Graph Motif problem implies an O ( ( 2 - ϵ ′ ) n ) -time algorithm for Set Cover .
ISSN:0178-4617
1432-0541
1432-0541
DOI:10.1007/s00453-015-9981-1