Algorithms for Numerical Analysis in High Dimensions

Nearly every numerical analysis algorithm has computational complexity that scales exponentially in the underlying physical dimension. The separated representation, introduced previously, allows many operations to be performed with scaling that is formally linear in the dimension. In this paper we f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on scientific computing Ročník 26; číslo 6; s. 2133 - 2159
Hlavní autoři: Beylkin, Gregory, Mohlenkamp, Martin J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2005
Témata:
ISSN:1064-8275, 1095-7197
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Nearly every numerical analysis algorithm has computational complexity that scales exponentially in the underlying physical dimension. The separated representation, introduced previously, allows many operations to be performed with scaling that is formally linear in the dimension. In this paper we further develop this representation by (i) discussing the variety of mechanisms that allow it to be surprisingly efficient; (ii) addressing the issue of conditioning; (iii) presenting algorithms for solving linear systems within this framework; and (iv) demonstrating methods for dealing with antisymmetric functions, as arise in the multiparticle Schrodinger equation in quantum mechanics. Numerical examples are given.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/040604959