Approximation algorithms for homogeneous polynomial optimization with quadratic constraints

In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, appr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical programming Ročník 125; číslo 2; s. 353 - 383
Hlavní autori: He, Simai, Li, Zhening, Zhang, Shuzhong
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer-Verlag 01.10.2010
Springer
Springer Nature B.V
Predmet:
ISSN:0025-5610, 1436-4646
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are non-convex, the problems under consideration are all NP-hard in general. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to be dependent only on the dimensions of the model. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraint. Likewise, approximation algorithms are proposed with provable approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids; namely, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-010-0409-z