Approximation algorithms for homogeneous polynomial optimization with quadratic constraints
In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, appr...
Saved in:
| Published in: | Mathematical programming Vol. 125; no. 2; pp. 353 - 383 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer-Verlag
01.10.2010
Springer Springer Nature B.V |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are non-convex, the problems under consideration are all NP-hard in general. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to be dependent only on the dimensions of the model. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraint. Likewise, approximation algorithms are proposed with provable approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids; namely, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied. |
|---|---|
| AbstractList | Issue Title: 20th International Symposium on Mathematical Programming - ISMP 2009 In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are non-convex, the problems under consideration are all NP-hard in general. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to be dependent only on the dimensions of the model. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraint. Likewise, approximation algorithms are proposed with provable approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids; namely, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied.[PUBLICATION ABSTRACT] In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic constraints. Such optimization models have wide applications, e.g., in signal processing, magnetic resonance imaging (MRI), data training, approximation theory, and portfolio selection. Since polynomial functions are non-convex, the problems under consideration are all NP-hard in general. In this paper we shall focus on polynomial-time approximation algorithms. In particular, we first study optimization of a multi-linear tensor function over the Cartesian product of spheres. We shall propose approximation algorithms for such problem and derive worst-case performance ratios, which are shown to be dependent only on the dimensions of the model. The methods are then extended to optimize a generic multi-variate homogeneous polynomial function with spherical constraint. Likewise, approximation algorithms are proposed with provable approximation performance ratios. Furthermore, the constraint set is relaxed to be an intersection of co-centered ellipsoids; namely, we consider maximization of a homogeneous polynomial over the intersection of ellipsoids centered at the origin, and propose polynomial-time approximation algorithms with provable worst-case performance ratios. Numerical results are reported, illustrating the effectiveness of the approximation algorithms studied. |
| Author | He, Simai Li, Zhening Zhang, Shuzhong |
| Author_xml | – sequence: 1 givenname: Simai surname: He fullname: He, Simai organization: Department of Management Sciences, City University of Hong Kong – sequence: 2 givenname: Zhening surname: Li fullname: Li, Zhening organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong – sequence: 3 givenname: Shuzhong surname: Zhang fullname: Zhang, Shuzhong email: zhang@se.cuhk.edu.hk organization: Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23415710$$DView record in Pascal Francis |
| BookMark | eNp9kUtLAzEUhYMoWB8_wN0gCG5G700ySV2K-ALBja5chDTNtJGZZEymaPvrTZ2KIOjmhsB3Luees0e2ffCWkCOEMwSQ5wkBQZZ5lMDholxtkRFyJkouuNgmIwBalZVA2CV7Kb0CALLxeEReLrsuhg_X6t4FX-hmFqLr520q6hCLeWjDzHobFqnoQrP0oXW6KULXu9atBsl7xou3hZ7G_DeFCT71UTvfpwOyU-sm2cPNu0-eb66fru7Kh8fb-6vLh9Jwin3JmRGVkZZVYyqs4LoWlWXGcG0ETLW0Y1tLbgApXkywsoKxiZxqwyeMTWtWs31yOuzNl7wtbOpV65KxTaO_nCsUEmnFKBUZPf6FvoZF9NmdklIwFJxChk42kE5GN3XU3rikuphTiktFGcdK4pqTA2diSCnaWhnXf4WyDqBRCGrdjRq6UXmodTdqlZX4S_m9_D8NHTQps35m44_1v0WfX8aliw |
| CODEN | MHPGA4 |
| CitedBy_id | crossref_primary_10_1109_TRO_2020_3036617 crossref_primary_10_1007_s40305_014_0054_y crossref_primary_10_1007_s10898_016_0469_6 crossref_primary_10_1007_s10898_010_9635_4 crossref_primary_10_1007_s10107_012_0584_1 crossref_primary_10_1109_TAC_2019_2897939 crossref_primary_10_1007_s11464_017_0644_1 crossref_primary_10_1137_24M164255X crossref_primary_10_1002_nla_2468 crossref_primary_10_1090_mcom_3834 crossref_primary_10_1287_moor_2014_0644 crossref_primary_10_1007_s10957_021_01809_y crossref_primary_10_1137_18M1165049 crossref_primary_10_1007_s10589_014_9640_5 crossref_primary_10_1287_moor_2023_0216 crossref_primary_10_1007_s10957_021_01983_z crossref_primary_10_1109_LSP_2015_2420592 crossref_primary_10_1007_s40305_013_0003_1 crossref_primary_10_1007_s10589_012_9462_2 crossref_primary_10_1145_2512329 crossref_primary_10_1137_15M1028777 crossref_primary_10_1137_140988796 crossref_primary_10_1016_j_sigpro_2022_108575 crossref_primary_10_1080_10556788_2012_711330 crossref_primary_10_1007_s10898_017_0561_6 crossref_primary_10_1137_22M1525326 crossref_primary_10_1038_s41534_020_00351_5 crossref_primary_10_1007_s11750_014_0322_3 crossref_primary_10_1515_math_2019_0028 crossref_primary_10_1007_s10957_019_01498_8 crossref_primary_10_1016_j_amc_2015_04_040 crossref_primary_10_1287_moor_2013_0637 crossref_primary_10_1016_j_jsc_2024_102326 crossref_primary_10_1137_130939110 crossref_primary_10_1002_nla_1996 crossref_primary_10_1088_1367_2630_ab2a9e crossref_primary_10_1137_130915261 crossref_primary_10_1137_22M1502951 crossref_primary_10_1007_s11590_023_02032_6 crossref_primary_10_1007_s11425_022_2074_7 crossref_primary_10_1007_s10898_021_01060_9 crossref_primary_10_1007_s10589_013_9617_9 crossref_primary_10_1007_s10878_017_0196_z crossref_primary_10_1002_nla_781 crossref_primary_10_1137_110827910 crossref_primary_10_1137_141002256 crossref_primary_10_1137_17M1144349 crossref_primary_10_1007_s11425_014_4930_z crossref_primary_10_1007_s10107_011_0464_0 crossref_primary_10_1137_23M1557489 crossref_primary_10_1137_110835335 crossref_primary_10_1007_s10898_020_00918_8 crossref_primary_10_1007_s40314_021_01636_x crossref_primary_10_1137_110834524 crossref_primary_10_1137_140983689 crossref_primary_10_1007_s10092_020_0356_x crossref_primary_10_1137_22M1482391 crossref_primary_10_1007_s10957_022_02050_x crossref_primary_10_1007_s10957_014_0538_2 crossref_primary_10_1007_s11425_016_0301_5 crossref_primary_10_1137_19M1303113 crossref_primary_10_1007_s10208_015_9286_4 crossref_primary_10_1007_s10092_021_00437_2 crossref_primary_10_1007_s10898_022_01140_4 crossref_primary_10_1007_s10898_024_01401_4 crossref_primary_10_1007_s10589_020_00177_z |
| Cites_doi | 10.1007/s10898-004-6875-1 10.1007/s101070050100 10.1137/090772952 10.1137/S1052623403420857 10.1007/s10898-007-9224-3 10.1109/TSP.2002.808112 10.1007/978-1-4757-3216-0_17 10.1090/S0002-9947-01-02898-7 10.1080/10556789908805762 10.1145/779359.779363 10.1137/080729104 10.1137/050642691 10.1007/s10107-003-0387-5 10.1109/TAC.2008.923679 10.1016/B978-075065448-7.50011-2 10.1287/moor.1080.0326 10.1007/s10107980012a 10.1080/10556780802699201 10.1016/j.tcs.2006.05.011 10.1137/S0895479801387413 10.1145/780542.780545 10.1016/S0377-0427(00)00385-X 10.1137/S1052623403421498 10.1137/04061341X 10.1023/A:1024778309049 10.1007/s00365-006-0639-2 10.1137/1.9780898718829 10.1007/s101070050006 10.1023/A:1008370723217 10.1016/S0378-4266(02)00261-3 10.1080/10556789808805690 10.1016/j.jsc.2005.05.007 10.1007/978-3-540-73273-0_26 10.1007/s10100-007-0052-9 10.1137/070679041 10.1111/j.1354-7798.2006.00309.x 10.1016/j.laa.2006.08.026 10.1016/j.ijplas.2007.07.016 10.1016/j.jmaa.2006.02.071 10.1145/227683.227684 10.1137/S1052623400366802 10.1080/10556789908805766 10.1016/j.jat.2007.08.005 10.1007/11751595_95 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Springer and Mathematical Optimization Society 2010 2015 INIST-CNRS |
| Copyright_xml | – notice: Springer and Mathematical Optimization Society 2010 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s10107-010-0409-z |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Databases ProQuest One Academic (New) ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Applied Sciences |
| EISSN | 1436-4646 |
| EndPage | 383 |
| ExternalDocumentID | 2189202061 23415710 10_1007_s10107_010_0409_z |
| Genre | Feature |
| GroupedDBID | --K --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1B1 1N0 1OL 1SB 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FE 8FG 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAS LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQ- NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RPZ RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 XPP YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZL0 ZMTXR ZWQNP ~02 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c421t-43c65c7e35826e64af65e3cc4ac60da7e8ef74c01219b15e633b7dac4b33df3f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 81 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000282829600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Wed Oct 01 14:09:40 EDT 2025 Thu Sep 25 00:46:27 EDT 2025 Mon Jul 21 09:11:26 EDT 2025 Tue Nov 18 21:51:25 EST 2025 Sat Nov 29 05:49:01 EST 2025 Fri Feb 21 02:32:41 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Multi-linear tensor form 90C26 90C59 15A69 Approximation algorithm Polynomial function optimization Intersection Non convex programming Linear form Polynomial approximation Worst case method Constraint satisfaction Polynomial method Modeling Convex programming Sphere Portfolio selection Convex function Approximation theory Cartesian product Mathematical programming Quadratic programming Set constraint Nuclear magnetic resonance imaging Constrained optimization Polynomial time Polynomial function NP hard problem Signal processing Homogeneous function Ellipsoid Portfolio management Non convex analysis |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MeetingName | 20th International Symposium on Mathematical Programming - ISMP 2009 |
| MergedId | FETCHMERGED-LOGICAL-c421t-43c65c7e35826e64af65e3cc4ac60da7e8ef74c01219b15e633b7dac4b33df3f3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://researchportal.port.ac.uk/ws/files/1778336/poly_homo_web.pdf |
| PQID | 776316420 |
| PQPubID | 25307 |
| PageCount | 31 |
| ParticipantIDs | proquest_miscellaneous_1671253226 proquest_journals_776316420 pascalfrancis_primary_23415710 crossref_citationtrail_10_1007_s10107_010_0409_z crossref_primary_10_1007_s10107_010_0409_z springer_journals_10_1007_s10107_010_0409_z |
| PublicationCentury | 2000 |
| PublicationDate | 2010-10-01 |
| PublicationDateYYYYMMDD | 2010-10-01 |
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationSubtitle | A Publication of the Mathematical Optimization Society |
| PublicationTitle | Mathematical programming |
| PublicationTitleAbbrev | Math. Program |
| PublicationYear | 2010 |
| Publisher | Springer-Verlag Springer Springer Nature B.V |
| Publisher_xml | – name: Springer-Verlag – name: Springer – name: Springer Nature B.V |
| References | PrakashA.J.ChangC.H.PactwaT.E.Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity marketsJ Banking Financ.2003271375139010.1016/S0378-4266(02)00261-3 SoA.M.C.YeY.ZhangJ.A unified theorem on SDP rank reductionMath. Oper. Res.20083391092010.1287/moor.1080.03262464650 Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, pp. 10–19, ACM, New York (2003) MandelbrotB.HudsonR.L.The (Mis)Behavior of Markets2004New YorkBasic Books1140.91004 Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. Computational Diffusion MRI Workshop (CDMRI’08), New York (2008) Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD Dissertation, California Institute of Technology, CA (2000) LuoZ.Q.SturmJ.F.ZhangS.Multivariate nonnegative quadratic mappingsSIAM J. Optim.200414114011621069.1501910.1137/S10526234034214982112968 GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM199542111511450885.6808810.1145/227683.2276841412228 De KlerkE.The complexity of optimizing over a simplex, hypercube or sphere: a short surveyCentral Eur J. Oper. Res.2008161111251152.9060710.1007/s10100-007-0052-92407041 QiL.WanZ.YangY.F.Global minimization of normal quadratic polynomials based on global descent directionsSIAM J. Optim.2004152753021077.9006610.1137/S10526234034208572112986 SturmJ.F.SeDuMi 1.02, a Matlab toolbox for optimization over symmetric conesOptim. Methods Softw.199911&1262565310.1080/105567899088057661778433 De AthaydeG.M.FlôresR.G.Jr.SatchellS.ScowcroftA.Incorporating skewness and kurtosis in portfolio optimization: a multidimensional efficient set, 10Advances in Portfolio Construction and Implementation2003UKButterworth-Heinemann24325710.1016/B978-075065448-7.50011-2 MaringerD.ParpasP.Global optimization of higher order moments in portfolio selectionJ. Glob. Optim.2009432192301169.9045410.1007/s10898-007-9224-32471883 NesterovYu.Semidefinite relaxation and nonconvex quadratic optimizationOptim. Methods Softw.199891411600904.9013610.1080/105567898088056901618100 QiL.Eigenvalues and invariants of tensorsJ. Math. Anal. Appl.2007325136313771113.1502010.1016/j.jmaa.2006.02.0712270090 ZhangS.HuangY.Complex quadratic optimization and semidefinite programmingSIAM J. Optim.2006168718901113.9011510.1137/04061341X2197560 LuoZ.Q.SidiropoulosN.D.TsengP.ZhangS.Approximation bounds for quadratic optimization with homogeneous quadratic constraintsSIAM J. Optim.2007181281156.900112299671 KroóA.SzabadosJ.Joackson-type theorems in homogeneous approximationJ. Appr. Theory20081521191142.4100310.1016/j.jat.2007.08.005 KofidisE.RegaliaPh.On the best rank-1 approximation of higher order supersymmetric tensorsSIAM J. Matrix Anal. App.2002238638841001.6503510.1137/S08954798013874131896822 LuoZ.Q.ZhangS.A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraintsSIAM J. Optim.2010201716173610.1137/0907729522600236 MaricicB.LuoZ.Q.DavidsonT.N.Blind constant modulus equalization via convex optimizationIEEE Trans. Signal Process.20035180581810.1109/TSP.2002.8081121963878 NesterovYu.FrenkJ.B.G.Squared functional systems and optimization problemsHigh Performance Optimization2000DordrechtKluwer Academic Press405440 YeY.Approximating global quadratic optimization with convex quadratic constraintsJ. Glob. Optim.1999151170953.9004010.1023/A:1008370723217 Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 1.2. http://cvxr.com/cvx (2010) NiQ.QiL.WangF.An eigenvalue method for testing positive definiteness of a multivariate formIEEE Trans. Automat. Contr.2008531096110710.1109/TAC.2008.9236792445667 Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper. UCL, Louvain-la-Neuve, Belgium (2003) JondeauE.RockingerM.Optimal portfolio allocation under higher momentsEur. Financ. Manage.200612295510.1111/j.1354-7798.2006.00309.x LaurentM.PutinarM.SullivantS.Sums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, Series: The IMA Volumes in Mathematics and its Applications, vol. 1492009BerlinSpringer QiL.TeoK.L.Multivariate polynomial minimization and its applications in signal processingJ. Glob. Optim.2003264194331023.9006410.1023/A:10247783090491989748 LasserreJ.B.Polynomials nonnegative on a grid and discrete representationsTrans. Am. Math. Soc.200135463164910.1090/S0002-9947-01-02898-71862561 Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemijer, N., Lelieveldt, B. (eds.) IPMI 2007, LNCS 4584, pp. 308–319 (2007) LasserreJ.B.Global optimization with polynomials and the problem of momentsSIAM J. Optim.2001117968171010.9006110.1137/S10526234003668021814045 De KlerkE.LaurentM.ParriloP.A.A PTAS for the minimization of polynomials of fixed degree over the simplexTheor. Comput. Sci.200626121022510.1016/j.tcs.2006.05.0112252579 Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual—version 6.2.0, Research Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan (1995) HenrionD.LasserreJ.B.GloptiPoly: global optimization over polynomials with Matlab and SeDuMiACM Tran. Math. Soft2003291651941070.6554910.1145/779359.7793632000881 Parpas, P., Rustem, B.: Global optimization of the scenario generation and portfolio selection problems. ICCSA 2006, LNCS 3982, pp. 908–917 (2006) ZhangS.Quadratic maximization and semidefinite relaxationMath. Prog. A2000874534651009.9008010.1007/s101070050006 HenrionD.LasserreJ.B.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009247617791178.9027710.1080/105567808026992012554910 QiL.Eigenvalues of a real supersymmetric tensorJ. Symbolic Comput.200540130213241125.1501410.1016/j.jsc.2005.05.0072178089 ZhangX.QiL.YeY.The cubic spherical optimization problems, Working Paper2009Hong KongThe Hong Kong Polytechnic University YeY.Approximating quadratic programming with bound and quadratic constraintsMath. Prog.1999842192260971.90056 MicchelliC.A.OlsenP.Penalized maximum-likelihood estimation, the Baum-Welch algorithm, diagonal balancing of symmetric matrices and applications to training acoustic dataJ. Comput. Appl. Math.20001193013310962.6500810.1016/S0377-0427(00)00385-X1774224 TohK.C.ToddM.J.TutuncuR.H.SDPT3—a Matlab software package for semidefinite programmingOptim. Methods Softw.19991154558110.1080/105567899088057621778429 DahlG.LeinaasJ.M.MyrheimJ.OvrumE.A tensor product matrix approximation problem in quantum physicsLinear. Algebra. Appl.20074207117251118.1502710.1016/j.laa.2006.08.0262278245 NemirovskiA.RoosC.TerlakyT.On maximization of quadratic form over intersection of ellipsoids with common centerMath. Prog. A1999864634730944.9005610.1007/s1010700501001733748 VarjúP.P.Approximation by homogeneous polynomialsConst. Appr.2007263173371126.4100410.1007/s00365-006-0639-2 Ben-TalA.NemirovskiA.Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaMPS-SIAM Series on Optimization0986.90032 LingC.NieJ.QiL.YeY.Biquadratic optimization over unit spheres and semidefinite programming relaxationsSIAM J. Optim.200920128613100577937810.1137/0807291042546345 ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Prog. B2003962933201043.1401810.1007/s10107-003-0387-51993050 QiL.Extrema of a real polynomialJ. Glob. Optim.2004304054331082.9009110.1007/s10898-004-6875-1 HeS.LuoZ.Q.NieJ.ZhangS.Semidefinite relaxation bounds for indefinite homogeneous quadratic optimizationSIAM J. Optim.2008195035231180.9021810.1137/0706790412425027 SoareS.YoonJ.W.CazacuO.On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet formingInt. J. Plast.2008249159440527440510.1016/j.ijplas.2007.07.016 E. De Klerk (409_CR6) 2006; 261 E. Kofidis (409_CR16) 2002; 23 L. Qi (409_CR41) 2003; 26 C.A. Micchelli (409_CR28) 2000; 119 J.B. Lasserre (409_CR19) 2001; 354 A.M.C. So (409_CR43) 2008; 33 409_CR10 409_CR11 Z.Q. Luo (409_CR24) 2010; 20 D. Maringer (409_CR27) 2009; 43 A.J. Prakash (409_CR37) 2003; 27 Z.Q. Luo (409_CR22) 2007; 18 K.C. Toh (409_CR46) 1999; 11 E. Jondeau (409_CR15) 2006; 12 Z.Q. Luo (409_CR23) 2004; 14 X. Zhang (409_CR52) 2009 P.P. Varjú (409_CR47) 2007; 26 S. Zhang (409_CR51) 2006; 16 L. Qi (409_CR38) 2004; 30 Y. Ye (409_CR49) 1999; 15 L. Qi (409_CR40) 2007; 325 A. Ben-Tal (409_CR2) 2001 J.F. Sturm (409_CR45) 1999; 11&12 G.M. De Athayde (409_CR4) 2003 E. De Klerk (409_CR5) 2008; 16 A. Kroó (409_CR17) 2008; 152 P.A. Parrilo (409_CR36) 2003; 96 M. Laurent (409_CR20) 2009 B. Mandelbrot (409_CR25) 2004 C. Ling (409_CR21) 2009; 20 S. He (409_CR12) 2008; 19 409_CR34 Yu. Nesterov (409_CR31) 2000 409_CR35 409_CR32 L. Qi (409_CR42) 2004; 15 409_CR7 409_CR8 409_CR1 M.X. Goemans (409_CR9) 1995; 42 Yu. Nesterov (409_CR30) 1998; 9 L. Qi (409_CR39) 2005; 40 D. Henrion (409_CR14) 2009; 24 S. Zhang (409_CR50) 2000; 87 D. Henrion (409_CR13) 2003; 29 G. Dahl (409_CR3) 2007; 420 S. Soare (409_CR44) 2008; 24 A. Nemirovski (409_CR29) 1999; 86 Q. Ni (409_CR33) 2008; 53 J.B. Lasserre (409_CR18) 2001; 11 B. Maricic (409_CR26) 2003; 51 Y. Ye (409_CR48) 1999; 84 |
| References_xml | – reference: NiQ.QiL.WangF.An eigenvalue method for testing positive definiteness of a multivariate formIEEE Trans. Automat. Contr.2008531096110710.1109/TAC.2008.9236792445667 – reference: JondeauE.RockingerM.Optimal portfolio allocation under higher momentsEur. Financ. Manage.200612295510.1111/j.1354-7798.2006.00309.x – reference: VarjúP.P.Approximation by homogeneous polynomialsConst. Appr.2007263173371126.4100410.1007/s00365-006-0639-2 – reference: GoemansM.X.WilliamsonD.P.Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programmingJ. ACM199542111511450885.6808810.1145/227683.2276841412228 – reference: ParriloP.A.Semidefinite programming relaxations for semialgebraic problemsMath. Prog. B2003962933201043.1401810.1007/s10107-003-0387-51993050 – reference: Ben-TalA.NemirovskiA.Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications2001PhiladelphiaMPS-SIAM Series on Optimization0986.90032 – reference: LaurentM.PutinarM.SullivantS.Sums of squares, moment matrices and optimization over polynomialsEmerging Applications of Algebraic Geometry, Series: The IMA Volumes in Mathematics and its Applications, vol. 1492009BerlinSpringer – reference: De KlerkE.LaurentM.ParriloP.A.A PTAS for the minimization of polynomials of fixed degree over the simplexTheor. Comput. Sci.200626121022510.1016/j.tcs.2006.05.0112252579 – reference: QiL.Eigenvalues of a real supersymmetric tensorJ. Symbolic Comput.200540130213241125.1501410.1016/j.jsc.2005.05.0072178089 – reference: Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. Computational Diffusion MRI Workshop (CDMRI’08), New York (2008) – reference: QiL.Eigenvalues and invariants of tensorsJ. Math. Anal. Appl.2007325136313771113.1502010.1016/j.jmaa.2006.02.0712270090 – reference: HeS.LuoZ.Q.NieJ.ZhangS.Semidefinite relaxation bounds for indefinite homogeneous quadratic optimizationSIAM J. Optim.2008195035231180.9021810.1137/0706790412425027 – reference: LasserreJ.B.Polynomials nonnegative on a grid and discrete representationsTrans. Am. Math. Soc.200135463164910.1090/S0002-9947-01-02898-71862561 – reference: YeY.Approximating global quadratic optimization with convex quadratic constraintsJ. Glob. Optim.1999151170953.9004010.1023/A:1008370723217 – reference: HenrionD.LasserreJ.B.GloptiPoly: global optimization over polynomials with Matlab and SeDuMiACM Tran. Math. Soft2003291651941070.6554910.1145/779359.7793632000881 – reference: QiL.Extrema of a real polynomialJ. Glob. Optim.2004304054331082.9009110.1007/s10898-004-6875-1 – reference: TohK.C.ToddM.J.TutuncuR.H.SDPT3—a Matlab software package for semidefinite programmingOptim. Methods Softw.19991154558110.1080/105567899088057621778429 – reference: ZhangS.Quadratic maximization and semidefinite relaxationMath. Prog. A2000874534651009.9008010.1007/s101070050006 – reference: DahlG.LeinaasJ.M.MyrheimJ.OvrumE.A tensor product matrix approximation problem in quantum physicsLinear. Algebra. Appl.20074207117251118.1502710.1016/j.laa.2006.08.0262278245 – reference: De KlerkE.The complexity of optimizing over a simplex, hypercube or sphere: a short surveyCentral Eur J. Oper. Res.2008161111251152.9060710.1007/s10100-007-0052-92407041 – reference: NesterovYu.FrenkJ.B.G.Squared functional systems and optimization problemsHigh Performance Optimization2000DordrechtKluwer Academic Press405440 – reference: MaricicB.LuoZ.Q.DavidsonT.N.Blind constant modulus equalization via convex optimizationIEEE Trans. Signal Process.20035180581810.1109/TSP.2002.8081121963878 – reference: Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD Dissertation, California Institute of Technology, CA (2000) – reference: YeY.Approximating quadratic programming with bound and quadratic constraintsMath. Prog.1999842192260971.90056 – reference: MandelbrotB.HudsonR.L.The (Mis)Behavior of Markets2004New YorkBasic Books1140.91004 – reference: SturmJ.F.SeDuMi 1.02, a Matlab toolbox for optimization over symmetric conesOptim. Methods Softw.199911&1262565310.1080/105567899088057661778433 – reference: QiL.WanZ.YangY.F.Global minimization of normal quadratic polynomials based on global descent directionsSIAM J. Optim.2004152753021077.9006610.1137/S10526234034208572112986 – reference: Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) User’s Manual—version 6.2.0, Research Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan (1995) – reference: Nesterov, Yu.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper. UCL, Louvain-la-Neuve, Belgium (2003) – reference: QiL.TeoK.L.Multivariate polynomial minimization and its applications in signal processingJ. Glob. Optim.2003264194331023.9006410.1023/A:10247783090491989748 – reference: NemirovskiA.RoosC.TerlakyT.On maximization of quadratic form over intersection of ellipsoids with common centerMath. Prog. A1999864634730944.9005610.1007/s1010700501001733748 – reference: SoA.M.C.YeY.ZhangJ.A unified theorem on SDP rank reductionMath. Oper. Res.20083391092010.1287/moor.1080.03262464650 – reference: ZhangS.HuangY.Complex quadratic optimization and semidefinite programmingSIAM J. Optim.2006168718901113.9011510.1137/04061341X2197560 – reference: LingC.NieJ.QiL.YeY.Biquadratic optimization over unit spheres and semidefinite programming relaxationsSIAM J. Optim.200920128613100577937810.1137/0807291042546345 – reference: MaringerD.ParpasP.Global optimization of higher order moments in portfolio selectionJ. Glob. Optim.2009432192301169.9045410.1007/s10898-007-9224-32471883 – reference: Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming, version 1.2. http://cvxr.com/cvx (2010) – reference: KroóA.SzabadosJ.Joackson-type theorems in homogeneous approximationJ. Appr. Theory20081521191142.4100310.1016/j.jat.2007.08.005 – reference: LuoZ.Q.SturmJ.F.ZhangS.Multivariate nonnegative quadratic mappingsSIAM J. Optim.200414114011621069.1501910.1137/S10526234034214982112968 – reference: KofidisE.RegaliaPh.On the best rank-1 approximation of higher order supersymmetric tensorsSIAM J. Matrix Anal. App.2002238638841001.6503510.1137/S08954798013874131896822 – reference: Parpas, P., Rustem, B.: Global optimization of the scenario generation and portfolio selection problems. ICCSA 2006, LNCS 3982, pp. 908–917 (2006) – reference: LasserreJ.B.Global optimization with polynomials and the problem of momentsSIAM J. Optim.2001117968171010.9006110.1137/S10526234003668021814045 – reference: De AthaydeG.M.FlôresR.G.Jr.SatchellS.ScowcroftA.Incorporating skewness and kurtosis in portfolio optimization: a multidimensional efficient set, 10Advances in Portfolio Construction and Implementation2003UKButterworth-Heinemann24325710.1016/B978-075065448-7.50011-2 – reference: LuoZ.Q.ZhangS.A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraintsSIAM J. Optim.2010201716173610.1137/0907729522600236 – reference: Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Karssemijer, N., Lelieveldt, B. (eds.) IPMI 2007, LNCS 4584, pp. 308–319 (2007) – reference: NesterovYu.Semidefinite relaxation and nonconvex quadratic optimizationOptim. Methods Softw.199891411600904.9013610.1080/105567898088056901618100 – reference: SoareS.YoonJ.W.CazacuO.On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet formingInt. J. Plast.2008249159440527440510.1016/j.ijplas.2007.07.016 – reference: PrakashA.J.ChangC.H.PactwaT.E.Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity marketsJ Banking Financ.2003271375139010.1016/S0378-4266(02)00261-3 – reference: MicchelliC.A.OlsenP.Penalized maximum-likelihood estimation, the Baum-Welch algorithm, diagonal balancing of symmetric matrices and applications to training acoustic dataJ. Comput. Appl. Math.20001193013310962.6500810.1016/S0377-0427(00)00385-X1774224 – reference: LuoZ.Q.SidiropoulosN.D.TsengP.ZhangS.Approximation bounds for quadratic optimization with homogeneous quadratic constraintsSIAM J. Optim.2007181281156.900112299671 – reference: Gurvits, L.: Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth ACM Symposium on Theory of Computing, pp. 10–19, ACM, New York (2003) – reference: HenrionD.LasserreJ.B.LoefbergJ.GloptiPoly 3: moments, optimization and semidefinite programmingOptim. Methods Softw.2009247617791178.9027710.1080/105567808026992012554910 – reference: ZhangX.QiL.YeY.The cubic spherical optimization problems, Working Paper2009Hong KongThe Hong Kong Polytechnic University – volume: 30 start-page: 405 year: 2004 ident: 409_CR38 publication-title: J. Glob. Optim. doi: 10.1007/s10898-004-6875-1 – volume-title: Emerging Applications of Algebraic Geometry, Series: The IMA Volumes in Mathematics and its Applications, vol. 149 year: 2009 ident: 409_CR20 – volume: 86 start-page: 463 year: 1999 ident: 409_CR29 publication-title: Math. Prog. A doi: 10.1007/s101070050100 – volume: 20 start-page: 1716 year: 2010 ident: 409_CR24 publication-title: SIAM J. Optim. doi: 10.1137/090772952 – volume: 15 start-page: 275 year: 2004 ident: 409_CR42 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403420857 – volume: 43 start-page: 219 year: 2009 ident: 409_CR27 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9224-3 – volume: 51 start-page: 805 year: 2003 ident: 409_CR26 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.808112 – start-page: 405 volume-title: High Performance Optimization year: 2000 ident: 409_CR31 doi: 10.1007/978-1-4757-3216-0_17 – volume: 354 start-page: 631 year: 2001 ident: 409_CR19 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-01-02898-7 – volume: 11 start-page: 545 year: 1999 ident: 409_CR46 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805762 – volume: 29 start-page: 165 year: 2003 ident: 409_CR13 publication-title: ACM Tran. Math. Soft doi: 10.1145/779359.779363 – volume: 20 start-page: 1286 year: 2009 ident: 409_CR21 publication-title: SIAM J. Optim. doi: 10.1137/080729104 – ident: 409_CR35 – volume: 18 start-page: 1 year: 2007 ident: 409_CR22 publication-title: SIAM J. Optim. doi: 10.1137/050642691 – ident: 409_CR7 – volume: 96 start-page: 293 year: 2003 ident: 409_CR36 publication-title: Math. Prog. B doi: 10.1007/s10107-003-0387-5 – volume: 53 start-page: 1096 year: 2008 ident: 409_CR33 publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2008.923679 – start-page: 243 volume-title: Advances in Portfolio Construction and Implementation year: 2003 ident: 409_CR4 doi: 10.1016/B978-075065448-7.50011-2 – ident: 409_CR32 – volume: 33 start-page: 910 year: 2008 ident: 409_CR43 publication-title: Math. Oper. Res. doi: 10.1287/moor.1080.0326 – volume: 84 start-page: 219 year: 1999 ident: 409_CR48 publication-title: Math. Prog. doi: 10.1007/s10107980012a – volume: 24 start-page: 761 year: 2009 ident: 409_CR14 publication-title: Optim. Methods Softw. doi: 10.1080/10556780802699201 – volume: 261 start-page: 210 year: 2006 ident: 409_CR6 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2006.05.011 – volume: 23 start-page: 863 year: 2002 ident: 409_CR16 publication-title: SIAM J. Matrix Anal. App. doi: 10.1137/S0895479801387413 – ident: 409_CR8 – ident: 409_CR11 doi: 10.1145/780542.780545 – volume: 119 start-page: 301 year: 2000 ident: 409_CR28 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(00)00385-X – volume: 14 start-page: 1140 year: 2004 ident: 409_CR23 publication-title: SIAM J. Optim. doi: 10.1137/S1052623403421498 – volume: 16 start-page: 871 year: 2006 ident: 409_CR51 publication-title: SIAM J. Optim. doi: 10.1137/04061341X – volume: 26 start-page: 419 year: 2003 ident: 409_CR41 publication-title: J. Glob. Optim. doi: 10.1023/A:1024778309049 – volume: 26 start-page: 317 year: 2007 ident: 409_CR47 publication-title: Const. Appr. doi: 10.1007/s00365-006-0639-2 – volume-title: The cubic spherical optimization problems, Working Paper year: 2009 ident: 409_CR52 – volume-title: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications year: 2001 ident: 409_CR2 doi: 10.1137/1.9780898718829 – volume: 87 start-page: 453 year: 2000 ident: 409_CR50 publication-title: Math. Prog. A doi: 10.1007/s101070050006 – volume: 15 start-page: 1 year: 1999 ident: 409_CR49 publication-title: J. Glob. Optim. doi: 10.1023/A:1008370723217 – volume-title: The (Mis)Behavior of Markets year: 2004 ident: 409_CR25 – volume: 27 start-page: 1375 year: 2003 ident: 409_CR37 publication-title: J Banking Financ. doi: 10.1016/S0378-4266(02)00261-3 – ident: 409_CR10 – volume: 9 start-page: 141 year: 1998 ident: 409_CR30 publication-title: Optim. Methods Softw. doi: 10.1080/10556789808805690 – volume: 40 start-page: 1302 year: 2005 ident: 409_CR39 publication-title: J. Symbolic Comput. doi: 10.1016/j.jsc.2005.05.007 – ident: 409_CR1 doi: 10.1007/978-3-540-73273-0_26 – volume: 16 start-page: 111 year: 2008 ident: 409_CR5 publication-title: Central Eur J. Oper. Res. doi: 10.1007/s10100-007-0052-9 – volume: 19 start-page: 503 year: 2008 ident: 409_CR12 publication-title: SIAM J. Optim. doi: 10.1137/070679041 – volume: 12 start-page: 29 year: 2006 ident: 409_CR15 publication-title: Eur. Financ. Manage. doi: 10.1111/j.1354-7798.2006.00309.x – volume: 420 start-page: 711 year: 2007 ident: 409_CR3 publication-title: Linear. Algebra. Appl. doi: 10.1016/j.laa.2006.08.026 – volume: 24 start-page: 915 year: 2008 ident: 409_CR44 publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2007.07.016 – volume: 325 start-page: 1363 year: 2007 ident: 409_CR40 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2006.02.071 – volume: 42 start-page: 1115 year: 1995 ident: 409_CR9 publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 11 start-page: 796 year: 2001 ident: 409_CR18 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – volume: 11&12 start-page: 625 year: 1999 ident: 409_CR45 publication-title: Optim. Methods Softw. doi: 10.1080/10556789908805766 – volume: 152 start-page: 1 year: 2008 ident: 409_CR17 publication-title: J. Appr. Theory doi: 10.1016/j.jat.2007.08.005 – ident: 409_CR34 doi: 10.1007/11751595_95 |
| SSID | ssj0001388 |
| Score | 2.2963758 |
| Snippet | In this paper, we consider approximation algorithms for optimizing a generic multi-variate homogeneous polynomial function, subject to homogeneous quadratic... Issue Title: 20th International Symposium on Mathematical Programming - ISMP 2009 In this paper, we consider approximation algorithms for optimizing a generic... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 353 |
| SubjectTerms | Algorithms Applied sciences Approximation Calculus of Variations and Optimal Control; Optimization Combinatorics Ellipsoids Exact sciences and technology Full Length Paper Intersections Linear algebra Magnetic resonance imaging Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical models Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Maximization Numerical Analysis Operational research and scientific management Operational research. Management science Optimization Polynomials Quantum physics Signal processing Studies Theoretical Voice recognition |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS91AEB-q9WAp9kPF1FZW6KklmGQ3u8lJpFR6UTy0IHgIm81EhfdeniavWP_6zuRLX0EvvQRCks2yMzv7252PH8DnOFAOZa59FyJtUNI49nMjpZ9H0qJUtMtVRUs2YU5Pk_Pz9KyPzan7sMrBJraGuqgcn5EfGJoIBO2j4HB-4zNpFDtXewaNFXhJwCbkiK6T6Gw0xKFMkoGxlWHC4NTsMufCNuaSYxuD1L9fWpZez21NI1R21BZL2PMfd2m7Ch2_-c_-v4WNHn6Ko05f3sELnL2HV4-KEtLdyVjJtd6EiyMuOn533WU4Cju5pFabq2ktCO2Kq2pakQZitajFvJr84Rxnar4iOzTtEzwFn_SKm4UtWNeccAxImZeiqbfg1_H3n99--D0hg-9UFDa-kk7HziBn12rUypY6Rumcsk4HhTWYYGmU4zJxaR7GqKXMTWGdyqUsSlnKbVidVTPcAaHSACOTIKFJVKEyeWrTApOiLJkUC50HwSCPzPXVyrlzk-yhzjKLMKNLxiLM7j34Mn4y70p1PPfy3pKQxy8iWtZjgl0e7A5yzPppXWejED3YH5_SfGQni20HOwu1IcxIZlJ78HVQlocWnuzQh2f_twvrbdhCG0X4EVab2wV-gjX3u7mub_datf8LedEKvQ priority: 102 providerName: ProQuest |
| Title | Approximation algorithms for homogeneous polynomial optimization with quadratic constraints |
| URI | https://link.springer.com/article/10.1007/s10107-010-0409-z https://www.proquest.com/docview/776316420 https://www.proquest.com/docview/1671253226 |
| Volume | 125 |
| WOSCitedRecordID | wos000282829600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20011001 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20011001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20011001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xjQcQ4nOIMqiMxBMoUhI7dvI4pk1IaFW18THgIXKcC6vUNqVJEeyv5y5NshUBErycZMW2rDv7_HPuC-B55CuHMtOeC5AeKEkUeZmR0stCaVEqeuWqvCk2YUaj-OwsGbdx3FXn7d6ZJBtNfSXYLWjcJNkd0U-8iy3Yodsu5noNJ6fve_UbyDju6rQyOOhMmb-bYuMyurWwFfGlWBe02ECcvxhJm7vn6M5_rfou3G6hpthf7417cA3n9-HmlQSE1Drus7ZWD-DzPicY_z5ZRzMKO_1SLif1-awShGzFeTkrabdhuarEopz-4Hhmmr4knTNrgzkF_9UVX1c2533lhGPwyTUo6moX3h0dvj147bXFFzynwqD2lHQ6cgY5klajVrbQEUrnlHXaz63BGAujHKeES7IgQi1lZnLrVCZlXshCPoTteTnHRyBU4mNoYiTkiCpQJktskmOcFwUXwEI3AL-TQurazOS8uGl6mVOZuZgSSZmL6cUAXvRDFuu0HH_rPNwQbT8ipCs8Iog1gL1O1ml7hKvUkOalt2RIX5_1X-nssUHFNsxOA20IH5JK1AN42Yn_coY_LujxP_XegxuNy0LjQfgEtuvlCp_CdfetnlTLIWyZDx-HsPPqcDQ-odYb4xE99g-YhmOm5pToOPo0bA7KTxXUCKk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1ba9VAEB5qFayI92Ks1hX0RQkm2U02eRApamlpe-hDhYIPcbOZ2MI5J6dNjtr-J_-jM7nVI9i3PvgSCEk2e5mZ_XZ3Zj6Al6GnLMoscq2PtEBJwtDNtJRuFkiDUtEqV-UN2YQejeLDw2R_CX71sTDsVtnbxMZQ56XlPfK3mhSBoH3gvZ-duEwaxYerPYNGKxU7ePaDVmzVu-2PNLyvgmDz08GHLbcjFXCtCvzaVdJGodXIEaIRRsoUUYjSWmVs5OVGY4yFVpZTnSWZH2IkZaZzY1UmZV7IQlK51-C64sRi7CkY7A-G35dx3DPEMizpD1HbSD2_8fFkX0ovcc8XpsHbM1PRiBQtlcYC1v3reLaZ9Tbv_mf9dQ_udPBabLT6cB-WcPoAbv2RdJHu9oZMtdVD-LLBSdV_HrcRnMKMv1Er6qNJJQjNi6NyUpKGYTmvxKwcn3EMNxVfkp2ddAGsgneyxcnc5KxLVlgG3My7UVeP4POVtHUVlqflFB-DUImHgY6R0DIqX-ksMUmOcV4UTPqF1gGvH__UdtnYuXLj9CKPNItMSpeURSY9d-D18MmsTUVy2cvrC0I1fBEQbAkJVjqw1stN2pmtKh2ExoEXw1OyN3yIZJrOTv1IEyamaSBy4E0vnBcl_LNCTy7933O4uXWwt5vubo921mClcdFoPCafwnJ9OsdncMN-r4-r0_VG5QR8vWqZ_Q0kPWjs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB-0iijFt3it1hX8pIQm2c1u8rG0Hop6FHxQ8EPYbCb24O5yXnKi_eudyas9UUH8Egj7YDM7O_ubzAvgWeQrhzLTnguQFJQkirzMSOllobQoFWm5Km-KTZjJJD45SY67OqdV7-3emyTbmAbO0rSo95d5sX8h8C1oXCbZNdFPvLPLcEWxHz2r6-8_DaI4kHHc12xloNCbNX83xcbFtL20FdGoaItbbKDPXwymzT00vvXfX3AbbnYQVBy0PHMHLuHiLty4kJiQ3t4N2Vyre_D5gBOPf5-2UY7Czr6Uq2l9Oq8EIV5xWs5L4kIs15VYlrMfHOdM05cki-ZdkKfgv73i69rmzG9OOAalXJuiru7Dx_HLD4evvK4og-dUGNSekk5HziBH2GrUyhY6Qumcsk77uTUYY2GU41RxSRZEqKXMTG6dyqTMC1nIB7C1KBf4EIRKfAxNjIQoUQXKZIlNcozzouDCWOhG4Pc7krouYzkvbpae51pmKqb0SJmK6dkIng9Dlm26jr913tvY5mFESFd7RNBrBLv9vqfd0a5SQxKZdMyQWp8OrXQm2dBiG2KngTaEG0lU6hG86FnhfIY_Lmjnn3o_gWvHR-P07evJm1243ng1NE6Gj2CrXq3xMVx13-pptdprzsRPE1QNNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming&rft.atitle=Approximation+algorithms+for+homogeneous+polynomial+optimization+with+quadratic+constraints&rft.au=SIMAI+HE&rft.au=ZHENING+LI&rft.au=SHUZHONG+ZHANG&rft.date=2010-10-01&rft.pub=Springer&rft.issn=0025-5610&rft.volume=125&rft.issue=2&rft.spage=353&rft.epage=383&rft_id=info:doi/10.1007%2Fs10107-010-0409-z&rft.externalDBID=n%2Fa&rft.externalDocID=23415710 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |