Computing Vertex Connectivity: New Bounds from Old Techniques

The vertex connectivity κ of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. We present the fastest known deterministic algorithm for finding the vertex connectivity and a corresponding separator. The time for a digraph having n vertices and m edges...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of algorithms Ročník 34; číslo 2; s. 222 - 250
Hlavní autori: Henzinger, Monika R., Rao, Satish, Gabow, Harold N.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: San Diego, CA Elsevier Inc 01.02.2000
Elsevier
Predmet:
ISSN:0196-6774, 1090-2678
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The vertex connectivity κ of a graph is the smallest number of vertices whose deletion separates the graph or makes it trivial. We present the fastest known deterministic algorithm for finding the vertex connectivity and a corresponding separator. The time for a digraph having n vertices and m edges is O(min{κ3+n,κn}m); for an undirected graph the term m can be replaced by κn. A randomized algorithm finds κ with error probability 1/2 in time O(nm). If the vertices have nonnegative weights the weighted vertex connectivity is found in time O(κ1nmlog(n2/m)) where κ1≤m/n is the unweighted vertex connectivity or in expected time O(nmlog(n2/m)) with error probability 1/2. The main algorithm combines two previous vertex connectivity algorithms and a generalization of the preflow-push algorithm of Hao and Orlin (1994, J. Algorithms17, 424–446) that computes edge connectivity.
ISSN:0196-6774
1090-2678
DOI:10.1006/jagm.1999.1055