Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse
Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani...
Uložené v:
| Vydané v: | Medical physics (Lancaster) Ročník 47; číslo 9; s. 4281 - 4293 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
01.09.2020
|
| Predmet: | |
| ISSN: | 0094-2405, 2473-4209, 2473-4209 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!