A survey on evolutionary machine learning
Artificial intelligence (AI) emphasises the creation of intelligent machines/systems that function like humans. AI has been applied to many real-world applications. Machine learning is a branch of AI based on the idea that systems can learn from data, identify hidden patterns, and make decisions wit...
Gespeichert in:
| Veröffentlicht in: | Journal of the Royal Society of New Zealand Jg. 49; H. 2; S. 205 - 228 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wellington
Taylor & Francis
01.06.2019
Taylor & Francis Ltd |
| Schlagworte: | |
| ISSN: | 0303-6758, 1175-8899, 1175-8899 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Artificial intelligence (AI) emphasises the creation of intelligent machines/systems that function like humans. AI has been applied to many real-world applications. Machine learning is a branch of AI based on the idea that systems can learn from data, identify hidden patterns, and make decisions with little/minimal human intervention. Evolutionary computation is an umbrella of population-based intelligent/learning algorithms inspired by nature, where New Zealand has a good international reputation. This paper provides a review on evolutionary machine learning, i.e. evolutionary computation techniques for major machine learning tasks such as classification, regression and clustering, and emerging topics including combinatorial optimisation, computer vision, deep learning, transfer learning, and ensemble learning. The paper also provides a brief review of evolutionary learning applications, such as supply chain and manufacturing for milk/dairy, wine and seafood industries, which are important to New Zealand. Finally, the paper presents current issues with future perspectives in evolutionary machine learning. |
|---|---|
| Bibliographie: | Archived by the National Library of New Zealand Includes illustrations, references; special issue, Nga kete: the 2019 annual collection of reviews ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0303-6758 1175-8899 1175-8899 |
| DOI: | 10.1080/03036758.2019.1609052 |