Adaptive fuzzy moving K-means clustering algorithm for image segmentation

Image segmentation remains one of the major challenges in image analysis. Many segmentation algorithms have been developed for various applications. Unsatisfactory results have been encountered in some cases, for many existing segmentation algorithms. In this paper, we introduce three modified versi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on consumer electronics Ročník 55; číslo 4; s. 2145 - 2153
Hlavní autori: Isa, N.A.M., Salamah, S.A., Ngah, U.K.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.11.2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0098-3063, 1558-4127
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Image segmentation remains one of the major challenges in image analysis. Many segmentation algorithms have been developed for various applications. Unsatisfactory results have been encountered in some cases, for many existing segmentation algorithms. In this paper, we introduce three modified versions of the conventional moving k-means clustering algorithm called the fuzzy moving k-means, adaptive moving k-means and adaptive fuzzy moving k-means algorithms for image segmentation application. Based on analysis done using standard images (i.e. original bridge and noisy bridge) and hard evidence on microscopic digital image (i.e. segmentation of Sprague Dawley rat sperm), our final segmentation results compare favorably with the results obtained by the conventional k-means, fuzzy c-means and moving k-means algorithms. The qualitative and quantitative analysis done proved that the proposed algorithms are less sensitive with respect to noise. As such, the occurrence of dead centers, center redundancy and trapped center at local minima problems can be avoided. The proposed clustering algorithms are also less sensitive to initialization process of clustering value. The final center values obtained are located within their respective groups of data. This enabled the size and shape of the object in question to be maintained and preserved. Based on the simplicity and capabilities of the proposed algorithms, these algorithms are suitable to be implemented in consumer electronics products such as digital microscope, or digital camera as post processing tool for digital images.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0098-3063
1558-4127
DOI:10.1109/TCE.2009.5373781