Robust optimality analysis of non-degenerate basic feasible solutions in linear programming problems with fuzzy objective coefficients
The necessarily optimal solution is known as the most reasonable solution to linear programming problems with interval/fuzzy objective function coefficients. As it remains optimal against the certain fluctuations of objective function coefficients, the necessarily optimal solution can be seen as a r...
Uložené v:
| Vydané v: | Fuzzy optimization and decision making Ročník 22; číslo 1; s. 51 - 79 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.03.2023
Springer Nature B.V |
| Predmet: | |
| ISSN: | 1568-4539, 1573-2908 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The necessarily optimal solution is known as the most reasonable solution to linear programming problems with interval/fuzzy objective function coefficients. As it remains optimal against the certain fluctuations of objective function coefficients, the necessarily optimal solution can be seen as a robust optimal solution. In this paper, we demonstrate that the necessary optimality degree of a non-degenerate basic feasible solution can be obtained easily by utilizing the tolerance approach. The necessary optimality degree evaluates to what extent the solution remains optimal against the fluctuations of objective function coefficients. Several types of fuzzy subsets showing the possible range of the objective function coefficient vector are considered. For each type of fuzzy subset, an efficient calculation method of necessary optimality degree is proposed. Numerical examples are given to illustrate the proposed methods. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1568-4539 1573-2908 |
| DOI: | 10.1007/s10700-022-09383-2 |