Pathwidth of cubic graphs and exact algorithms

We prove that for any ɛ > 0 there exists an integer n ɛ such that the pathwidth of every cubic (or 3-regular) graph on n > n ɛ vertices is at most ( 1 / 6 + ɛ ) n . Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters Jg. 97; H. 5; S. 191 - 196
Hauptverfasser: Fomin, Fedor V., Høie, Kjartan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 16.03.2006
Elsevier Science
Elsevier Sequoia S.A
Schlagworte:
ISSN:0020-0190, 1872-6119
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for any ɛ > 0 there exists an integer n ɛ such that the pathwidth of every cubic (or 3-regular) graph on n > n ɛ vertices is at most ( 1 / 6 + ɛ ) n . Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2005.10.012