Pathwidth of cubic graphs and exact algorithms
We prove that for any ɛ > 0 there exists an integer n ɛ such that the pathwidth of every cubic (or 3-regular) graph on n > n ɛ vertices is at most ( 1 / 6 + ɛ ) n . Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum ver...
Uložené v:
| Vydané v: | Information processing letters Ročník 97; číslo 5; s. 191 - 196 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
16.03.2006
Elsevier Science Elsevier Sequoia S.A |
| Predmet: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We prove that for any
ɛ
>
0
there exists an integer
n
ɛ
such that the pathwidth of every cubic (or 3-regular) graph on
n
>
n
ɛ
vertices is at most
(
1
/
6
+
ɛ
)
n
. Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2005.10.012 |