Pathwidth of cubic graphs and exact algorithms

We prove that for any ɛ > 0 there exists an integer n ɛ such that the pathwidth of every cubic (or 3-regular) graph on n > n ɛ vertices is at most ( 1 / 6 + ɛ ) n . Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum ver...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 97; číslo 5; s. 191 - 196
Hlavní autori: Fomin, Fedor V., Høie, Kjartan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 16.03.2006
Elsevier Science
Elsevier Sequoia S.A
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We prove that for any ɛ > 0 there exists an integer n ɛ such that the pathwidth of every cubic (or 3-regular) graph on n > n ɛ vertices is at most ( 1 / 6 + ɛ ) n . Based on this bound we improve the worst case time analysis for a number of exact exponential algorithms on graphs of maximum vertex degree three.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2005.10.012