PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations

Many real world datasets exhibit an embedding of low-dimensional structure in a high-dimensional manifold. Examples include images, videos and internet traffic data. It is of great significance to estimate and track the low-dimensional structure with small storage requirements and computational comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 61; no. 23; pp. 5947 - 5959
Main Authors: Yuejie Chi, Eldar, Yonina C., Calderbank, Robert
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.12.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many real world datasets exhibit an embedding of low-dimensional structure in a high-dimensional manifold. Examples include images, videos and internet traffic data. It is of great significance to estimate and track the low-dimensional structure with small storage requirements and computational complexity when the data dimension is high. Therefore we consider the problem of reconstructing a data stream from a small subset of its entries, where the data is assumed to lie in a low-dimensional linear subspace, possibly corrupted by noise. We further consider tracking the change of the underlying subspace, which can be applied to applications such as video denoising, network monitoring and anomaly detection. Our setting can be viewed as a sequential low-rank matrix completion problem in which the subspace is learned in an online fashion. The proposed algorithm, dubbed Parallel Estimation and Tracking by REcursive Least Squares (PETRELS), first identifies the underlying low-dimensional subspace, and then reconstructs the missing entries via least-squares estimation if required. Subspace identification is performed via a recursive procedure for each row of the subspace matrix in parallel with discounting for previous observations. Numerical examples are provided for direction-of-arrival estimation and matrix completion, comparing PETRELS with state of the art batch algorithms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2282910