Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation
Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T reg (tT reg ) cells can become glycolytic in response to tumou...
Uložené v:
| Vydané v: | Nature metabolism Ročník 2; číslo 10; s. 1046 - 1061 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
01.10.2020
Nature Publishing Group |
| Predmet: | |
| ISSN: | 2522-5812, 2522-5812 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Following activation, conventional T (T
conv
) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T
reg
) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T
reg
(tT
reg
) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT
reg
cells, but not in T
conv
cells. Glycolysis in CD3–TNFR2-activated tT
reg
cells is driven by PI3-kinase–mTOR signalling and supports tT
reg
cell identity and suppressive function. In contrast to glycolytic T
conv
cells, glycolytic tT
reg
cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2
hi
CD4
+
CD25
hi
CD127
lo
effector T cells, which were FOXP3
+
IKZF2
+
, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT
reg
cells. Our study links TNFR2 costimulation in human tT
reg
cells to metabolic remodelling, providing an additional avenue for drug targeting.
After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions. |
|---|---|
| AbstractList | Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting. Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3–TNFR2-activated tTreg cells is driven by PI3-kinase–mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions. Following activation, conventional T (T ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T (tT ) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT cells, but not in T cells. Glycolysis in CD3-TNFR2-activated tT cells is driven by PI3-kinase-mTOR signalling and supports tT cell identity and suppressive function. In contrast to glycolytic T cells, glycolytic tT cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2 CD4 CD25 CD127 effector T cells, which were FOXP3 IKZF2 , revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT cells. Our study links TNFR2 costimulation in human tT cells to metabolic remodelling, providing an additional avenue for drug targeting. Following activation, conventional T (T conv ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T reg ) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived T reg (tT reg ) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tT reg cells, but not in T conv cells. Glycolysis in CD3–TNFR2-activated tT reg cells is driven by PI3-kinase–mTOR signalling and supports tT reg cell identity and suppressive function. In contrast to glycolytic T conv cells, glycolytic tT reg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2 hi CD4 + CD25 hi CD127 lo effector T cells, which were FOXP3 + IKZF2 + , revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tT reg cells. Our study links TNFR2 costimulation in human tT reg cells to metabolic remodelling, providing an additional avenue for drug targeting. After activation, conventional T cells undergo metabolic reprogramming. de Kivit et al. show that in human thymic regulatory T cells, TNFR2 stimulation promotes a glycolytic switch with a preferential glucose-derived carbon flux into the TCA cycle to support suppressive functions. |
| Author | de Kivit, Sander Berkers, Celia R. Berlin, Ilana Hoekstra, Anna T. Derks, Rico J. E. Mensink, Mark Both, Demi Aslam, Muhammad A. Amsen, Derk Borst, Jannie |
| Author_xml | – sequence: 1 givenname: Sander orcidid: 0000-0003-0148-7802 surname: de Kivit fullname: de Kivit, Sander organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute – sequence: 2 givenname: Mark orcidid: 0000-0002-2470-6919 surname: Mensink fullname: Mensink, Mark organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute – sequence: 3 givenname: Anna T. surname: Hoekstra fullname: Hoekstra, Anna T. organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University – sequence: 4 givenname: Ilana surname: Berlin fullname: Berlin, Ilana organization: Oncode Institute, Leiden University Medical Center, Department of Cell and Chemical Biology, Leiden University Medical Center – sequence: 5 givenname: Rico J. E. orcidid: 0000-0002-8920-7133 surname: Derks fullname: Derks, Rico J. E. organization: Center for Proteomics and Metabolomics, Leiden University Medical Center – sequence: 6 givenname: Demi orcidid: 0000-0003-3850-9913 surname: Both fullname: Both, Demi organization: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute – sequence: 7 givenname: Muhammad A. surname: Aslam fullname: Aslam, Muhammad A. organization: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute – sequence: 8 givenname: Derk surname: Amsen fullname: Amsen, Derk organization: Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory – sequence: 9 givenname: Celia R. orcidid: 0000-0003-0746-8565 surname: Berkers fullname: Berkers, Celia R. email: c.r.berkers@uu.nl organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University – sequence: 10 givenname: Jannie orcidid: 0000-0002-8043-5009 surname: Borst fullname: Borst, Jannie email: j.g.borst@lumc.nl organization: Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Oncode Institute, Leiden University Medical Center, Division of Tumor Biology & Immunology, The Netherlands Cancer Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32958937$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kb1uHCEURlFkK3Ycv0CKCClNmonhMgxMGVn-iWQlRTZVCgQMs8Zihg0wWu3bh_XaSuTCFbc459Plfu_Q0Rxnh9AHSr5QwuRFbgE4bwiQhhAQtNm-QafAARouKRz9N5-g85wfSKUobSn0b9EJg57LnolT9Ptn0SY4fL9MesbJrZegS0w7vMLWhZBx3vpi73GJeB12NoZd9hmPMYS49fMar75fV8u6TZUwYBtz8dM-w8f5PToedcju_Ok9Q7-ur1aXt83dj5tvl1_vGtvSvjSDYYYIosEaDoOGmiaN6HnHOzFIyk1HDOkMc8bQ3sjRMGnFqB3hDDomB3aGPh9yNyn-WVwuavJ5v72eXVyygrZtpaSC84p-eoE-xCXNdTvFADoi6r1EpT4-UYuZ3KA2yU867dTz2SogD4BNMefkRmV9efxzSdoHRYnal6QOJalaknosSW2rCi_U5_RXJXaQcoXntUv_1n7F-gtZ3aRJ |
| CitedBy_id | crossref_primary_10_20900_immunometab20210031 crossref_primary_10_1016_j_it_2025_06_007 crossref_primary_10_1038_s42003_021_02721_x crossref_primary_10_1016_j_berh_2024_101941 crossref_primary_10_1172_JCI169365 crossref_primary_10_1007_s13402_022_00742_0 crossref_primary_10_1016_j_phymed_2022_154482 crossref_primary_10_3390_metabo10110426 crossref_primary_10_1007_s10330_022_0558_8 crossref_primary_10_1016_j_immuni_2022_10_006 crossref_primary_10_1186_s13046_024_03218_1 crossref_primary_10_1002_eji_70062 crossref_primary_10_3390_cancers14112603 crossref_primary_10_1038_s41423_024_01148_8 crossref_primary_10_1016_j_intimp_2022_108823 crossref_primary_10_1016_j_mam_2020_100936 crossref_primary_10_1038_s41423_023_01071_4 crossref_primary_10_1002_1878_0261_13588 crossref_primary_10_1146_annurev_immunol_082423_040557 crossref_primary_10_1038_s41584_023_01002_7 crossref_primary_10_1186_s12967_024_05620_x crossref_primary_10_3389_fonc_2022_862154 crossref_primary_10_3389_fimmu_2021_783282 crossref_primary_10_3389_fimmu_2023_1209188 crossref_primary_10_1016_j_cytogfr_2022_11_001 crossref_primary_10_1016_j_jri_2024_104387 crossref_primary_10_3389_fimmu_2022_881166 crossref_primary_10_1053_j_gastro_2023_10_022 crossref_primary_10_1002_eji_202250002 crossref_primary_10_1093_bbb_zbab226 crossref_primary_10_1093_cei_uxae071 crossref_primary_10_3389_fimmu_2022_888274 crossref_primary_10_1007_s13577_024_01083_w crossref_primary_10_1038_s41598_022_23515_z crossref_primary_10_1016_j_isci_2022_104435 crossref_primary_10_1002_advs_202306515 crossref_primary_10_1109_TCBB_2021_3090586 crossref_primary_10_1093_jimmun_vkaf075 crossref_primary_10_1136_jitc_2022_005241 crossref_primary_10_1038_s41584_021_00639_6 crossref_primary_10_1002_eji_70059 crossref_primary_10_1016_j_imlet_2024_106839 crossref_primary_10_3389_fimmu_2021_692004 |
| Cites_doi | 10.1172/JCI76012 10.1016/j.cmet.2016.12.018 10.1038/nature24057 10.1038/s41467-017-02672-0 10.1038/ni904 10.1182/blood-2017-11-785865 10.3389/fimmu.2018.00784 10.1038/nri1248 10.1016/j.cels.2018.06.003 10.1126/scisignal.2005970 10.3389/fimmu.2019.00038 10.1172/jci.insight.89160 10.1073/pnas.1807499115 10.1371/journal.pbio.0050038 10.3389/fimmu.2018.01849 10.4049/jimmunol.1003613 10.1080/14728222.2019.1586886 10.1038/ni.3269 10.1016/j.celrep.2019.05.020 10.1016/j.celrep.2018.01.040 10.1016/j.immuni.2019.01.020 10.4049/jimmunol.181.4.2855 10.1016/j.tibs.2016.02.003 10.1371/journal.pone.0156311 10.1073/pnas.1715363114 10.1073/pnas.0800928105 10.3389/fimmu.2018.00444 10.1126/science.1160809 10.2967/jnumed.113.132761 10.1038/s41467-018-04392-5 10.1038/nature12297 10.1016/j.cels.2015.12.004 10.1182/blood-2007-06-094482 10.1038/nature05563 10.1016/j.immuni.2018.04.008 10.1016/S1074-7613(02)00323-0 10.1038/ni.3077 10.1096/fj.14-268409 10.1016/j.immuni.2009.04.006 10.1111/imr.12160 10.1016/0092-8674(95)90192-2 10.1084/jem.20151563 10.1016/j.immuni.2016.02.022 10.1016/j.cmet.2014.05.004 10.3389/fimmu.2018.00573 10.1126/science.1079490 10.1186/1476-4598-13-153 10.1084/jem.20110278 10.1021/ac9004698 10.1038/s41586-019-1678-1 10.1038/ni.3577 10.1093/bioinformatics/btp616 10.1021/acs.analchem.7b04424 10.1189/jlb.2AB0514-273RR 10.1182/blood-2008-01-133967 10.1016/j.it.2014.12.001 10.1093/nar/gks042 10.1097/01.ftd.0000179845.53213.39 10.1038/ni.3365 10.1038/ni.2005 10.1002/0471142735.im0316bs113 10.4049/jimmunol.1000560 10.1093/nar/gkv007 10.3389/fimmu.2018.00141 10.12688/f1000research.8987.2 10.4049/jimmunol.1901250 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 Copyright Nature Publishing Group Oct 2020 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: Copyright Nature Publishing Group Oct 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1038/s42255-020-00271-w |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Nursing & Allied Health Database ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2522-5812 |
| EndPage | 1061 |
| ExternalDocumentID | 32958937 10_1038_s42255_020_00271_w |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ZonMW-TOP (40-00812-98-13071) – fundername: Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan – fundername: Institute for Chemical Immunology (ICI-00014, 25) – fundername: Oncode ZonMW-TOP (40-00812-98-13071) Institute for Chemical Immunology (ICI-00014, 25) |
| GroupedDBID | 0R~ 53G AAEEF AARCD AAYZH ABJNI ACBWK ADBBV AFSHS AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS EBS EJD FSGXE NNMJJ ODYON RNT SIXXV SNYQT SOJ TBHMF 7RV 7X7 8FI 8FJ AAYXX ABUWG AFANA AFFHD AFKRA AGSTI ATHPR BBNVY BENPR BHPHI CCPQU CITATION FYUFA HCIFZ HMCUK M7P NAPCQ PHGZM PHGZT PPXIY PQGLB UKHRP CGR CUY CVF ECM EIF NFIDA NPM 3V. 7XB 8FE 8FH 8FK AZQEC DWQXO GNUQQ K9. LK8 PJZUB PKEHL PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-c419t-db3b070a2cb52da2ece8b7956567d815b60b06b3ebb19b8fb38c7fae0532638d3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000581831300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2522-5812 |
| IngestDate | Thu Oct 02 12:28:02 EDT 2025 Tue Oct 07 07:26:12 EDT 2025 Mon Jul 21 04:15:26 EDT 2025 Tue Nov 18 22:04:22 EST 2025 Sat Nov 29 06:12:57 EST 2025 Fri Feb 21 02:38:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-db3b070a2cb52da2ece8b7956567d815b60b06b3ebb19b8fb38c7fae0532638d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8920-7133 0000-0002-2470-6919 0000-0003-0746-8565 0000-0003-3850-9913 0000-0002-8043-5009 0000-0003-0148-7802 |
| OpenAccessLink | https://www.nature.com/articles/s42255-020-00271-w.pdf |
| PMID | 32958937 |
| PQID | 3226078127 |
| PQPubID | 7343587 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2444881755 proquest_journals_3226078127 pubmed_primary_32958937 crossref_citationtrail_10_1038_s42255_020_00271_w crossref_primary_10_1038_s42255_020_00271_w springer_journals_10_1038_s42255_020_00271_w |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: Germany |
| PublicationTitle | Nature metabolism |
| PublicationTitleAbbrev | Nat Metab |
| PublicationTitleAlternate | Nat Metab |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Angelin (CR22) 2017; 25 Zhuo (CR66) 2014; 13 Hori, Nomura, Sakaguchi (CR4) 2003; 299 Cuadrado (CR14) 2018; 48 Shevach, Thornton (CR2) 2014; 259 Thurnher, Gruenbacher (CR53) 2015; 8 Smith (CR63) 2005; 27 CR33 Herbertson (CR50) 2014; 55 Brightbill (CR56) 2018; 9 Liberzon (CR61) 2015; 1 He (CR39) 2016; 11 Zhang (CR51) 2019; 574 Yang, Wang, Brand, Zheng (CR30) 2018; 9 Howie (CR24) 2017; 2 Ross, Dalluge (CR62) 2009; 81 Wing, Tanaka, Sakaguchi (CR1) 2019; 50 Procaccini (CR28) 2016; 44 Basu, Hubbard, Shevach (CR17) 2015; 97 Salomon (CR10) 2018; 9 Shi (CR19) 2011; 208 Koenen (CR8) 2008; 112 Floess (CR5) 2007; 5 Riley, June, Blazar (CR7) 2009; 30 CR48 Grell (CR46) 1995; 83 Zeiser (CR12) 2008; 111 Gerriets (CR37) 2015; 125 Beier (CR21) 2015; 29 De Rosa (CR29) 2015; 16 Zheng (CR34) 2007; 445 Haas (CR43) 2016; 41 Atretkhany (CR31) 2018; 115 Urbano, Koenen, Joosten, He (CR47) 2018; 9 Timilshina (CR54) 2019; 27 CR59 Fontenot, Gavin, Rudensky (CR3) 2003; 4 Medler, Wajant (CR9) 2019; 23 Michalek (CR18) 2011; 186 CR52 Shi, Sun (CR38) 2018; 9 Guijas (CR64) 2018; 90 Frauwirth (CR16) 2002; 16 Wei (CR26) 2016; 17 Golovina (CR35) 2008; 181 Ritchie (CR60) 2015; 43 Delgoffe (CR25) 2011; 12 Robinson, McCarthy, Smyth (CR58) 2010; 26 Chapman (CR27) 2018; 9 Vander Heiden, Cantley, Thompson (CR42) 2009; 324 Zeng (CR55) 2013; 499 van der Windt, Chang, Pearce (CR65) 2016; 113 Gerriets (CR23) 2016; 17 Menk (CR15) 2018; 22 Marin Morales (CR32) 2019; 10 Chopra (CR49) 2016; 213 McCarthy, Chen, Smyth (CR57) 2012; 40 Walker, Sansom (CR45) 2015; 36 Hui (CR41) 2017; 551 Acuto, Michel (CR44) 2003; 3 Blazar, MacDonald, Hill (CR6) 2018; 131 Macintyre (CR40) 2014; 20 Sauer (CR13) 2008; 105 Huynh (CR11) 2015; 16 He (CR20) 2017; 114 Tanner (CR36) 2018; 7 PCM Urbano (271_CR47) 2018; 9 D Zhang (271_CR51) 2019; 574 271_CR33 C Zhuo (271_CR66) 2014; 13 AV Menk (271_CR15) 2018; 22 S Yang (271_CR30) 2018; 9 J Wei (271_CR26) 2016; 17 GM Delgoffe (271_CR25) 2011; 12 D Howie (271_CR24) 2017; 2 Y Zheng (271_CR34) 2007; 445 R Haas (271_CR43) 2016; 41 JD Fontenot (271_CR3) 2003; 4 RD Michalek (271_CR18) 2011; 186 MD Robinson (271_CR58) 2010; 26 VA Gerriets (271_CR37) 2015; 125 X He (271_CR39) 2016; 11 M Grell (271_CR46) 1995; 83 RA Herbertson (271_CR50) 2014; 55 S Hui (271_CR41) 2017; 551 CA Smith (271_CR63) 2005; 27 VA Gerriets (271_CR23) 2016; 17 N He (271_CR20) 2017; 114 BL Salomon (271_CR10) 2018; 9 KA Frauwirth (271_CR16) 2002; 16 KN Atretkhany (271_CR31) 2018; 115 HJ Koenen (271_CR8) 2008; 112 GJ van der Windt (271_CR65) 2016; 113 TN Golovina (271_CR35) 2008; 181 J Medler (271_CR9) 2019; 23 JM Marin Morales (271_CR32) 2019; 10 A Angelin (271_CR22) 2017; 25 ME Ritchie (271_CR60) 2015; 43 LB Tanner (271_CR36) 2018; 7 V De Rosa (271_CR29) 2015; 16 271_CR59 O Acuto (271_CR44) 2003; 3 H Zeng (271_CR55) 2013; 499 R Zeiser (271_CR12) 2008; 111 A Liberzon (271_CR61) 2015; 1 M Thurnher (271_CR53) 2015; 8 C Guijas (271_CR64) 2018; 90 M Timilshina (271_CR54) 2019; 27 S Hori (271_CR4) 2003; 299 NM Chapman (271_CR27) 2018; 9 AN Macintyre (271_CR40) 2014; 20 HD Brightbill (271_CR56) 2018; 9 S Floess (271_CR5) 2007; 5 S Basu (271_CR17) 2015; 97 LZ Shi (271_CR19) 2011; 208 JB Wing (271_CR1) 2019; 50 S Sauer (271_CR13) 2008; 105 E Cuadrado (271_CR14) 2018; 48 JH Shi (271_CR38) 2018; 9 MG Vander Heiden (271_CR42) 2009; 324 EM Shevach (271_CR2) 2014; 259 271_CR48 JL Riley (271_CR7) 2009; 30 KL Ross (271_CR62) 2009; 81 271_CR52 UH Beier (271_CR21) 2015; 29 M Chopra (271_CR49) 2016; 213 C Procaccini (271_CR28) 2016; 44 BR Blazar (271_CR6) 2018; 131 LS Walker (271_CR45) 2015; 36 DJ McCarthy (271_CR57) 2012; 40 A Huynh (271_CR11) 2015; 16 |
| References_xml | – volume: 125 start-page: 194 year: 2015 end-page: 207 ident: CR37 article-title: Metabolic programming and PDHK1 control CD4 T cell subsets and inflammation publication-title: J. Clin. Invest. doi: 10.1172/JCI76012 – volume: 25 start-page: 1282 year: 2017 end-page: 1293 e1287 ident: CR22 article-title: Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.018 – volume: 551 start-page: 115 year: 2017 end-page: 118 ident: CR41 article-title: Glucose feeds the TCA cycle via circulating lactate publication-title: Nature doi: 10.1038/nature24057 – volume: 9 year: 2018 ident: CR56 article-title: NF-κB inducing kinase is a therapeutic target for systemic lupus erythematosus publication-title: Nat. Commun. doi: 10.1038/s41467-017-02672-0 – volume: 4 start-page: 330 year: 2003 end-page: 336 ident: CR3 article-title: Foxp3 programs the development and function of CD4 CD25 regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni904 – volume: 131 start-page: 2651 year: 2018 end-page: 2660 ident: CR6 article-title: Immune regulatory cell infusion for graft-versus-host disease prevention and therapy publication-title: Blood doi: 10.1182/blood-2017-11-785865 – volume: 9 start-page: 784 year: 2018 ident: CR30 article-title: Role of TNF–TNF receptor 2 Signal in regulatory T cells and Its therapeutic implications publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00784 – volume: 3 start-page: 939 year: 2003 end-page: 951 ident: CR44 article-title: CD28-mediated co-stimulation: a quantitative support for TCR signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1248 – volume: 7 start-page: 49 year: 2018 end-page: 62 e48 ident: CR36 article-title: Four key steps control glycolytic flux in mammalian cells publication-title: Cell Syst. doi: 10.1016/j.cels.2018.06.003 – volume: 8 start-page: re4 year: 2015 ident: CR53 article-title: T lymphocyte regulation by mevalonate metabolism publication-title: Sci. Signal doi: 10.1126/scisignal.2005970 – volume: 10 start-page: 38 year: 2019 ident: CR32 article-title: Automated clinical grade expansion of regulatory T cells in a fully closed system publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00038 – volume: 2 start-page: e89160 year: 2017 ident: CR24 article-title: Foxp3 drives oxidative phosphorylation and protection from lipotoxicity publication-title: JCI Insight doi: 10.1172/jci.insight.89160 – volume: 115 start-page: 13051 year: 2018 end-page: 13056 ident: CR31 article-title: Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807499115 – volume: 5 start-page: e38 year: 2007 ident: CR5 article-title: Epigenetic control of the foxp3 locus in regulatory T cells publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050038 – volume: 9 start-page: 1849 year: 2018 ident: CR38 article-title: Tumor necrosis factor receptor-associated factor regulation of nuclear factor κB and mitogen-activated protein kinase pathways publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01849 – volume: 186 start-page: 3299 year: 2011 end-page: 3303 ident: CR18 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4 T cell subsets publication-title: J. Immunol. doi: 10.4049/jimmunol.1003613 – volume: 23 start-page: 295 year: 2019 end-page: 307 ident: CR9 article-title: Tumor necrosis factor receptor-2 (TNFR2): an overview of an emerging drug target publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2019.1586886 – volume: 16 start-page: 1174 year: 2015 end-page: 1184 ident: CR29 article-title: Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants publication-title: Nat. Immunol. doi: 10.1038/ni.3269 – volume: 27 start-page: 2948 year: 2019 end-page: 2961 e2947 ident: CR54 article-title: Activation of mevalonate pathway via LKB1 is essential for stability of treg cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.020 – volume: 22 start-page: 1509 year: 2018 end-page: 1521 ident: CR15 article-title: Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.040 – volume: 50 start-page: 302 year: 2019 end-page: 316 ident: CR1 article-title: Human FOXP3 regulatory T cell heterogeneity and function in autoimmunity and cancer publication-title: Immunity doi: 10.1016/j.immuni.2019.01.020 – volume: 181 start-page: 2855 year: 2008 end-page: 2868 ident: CR35 article-title: CD28 costimulation is essential for human T regulatory expansion and function publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2855 – volume: 43 start-page: e47 year: 2015 ident: CR60 article-title: limma powers differential expression analyses for RNA-sequencing and microarray studies publication-title: Nucleic Acids Res. – volume: 41 start-page: 460 year: 2016 end-page: 471 ident: CR43 article-title: Intermediates of metabolism: from bystanders to signalling molecules publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.02.003 – volume: 11 start-page: e0156311 year: 2016 ident: CR39 article-title: A TNFR2-agonist facilitates high purity expansion of human low purity treg cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0156311 – volume: 114 start-page: 12542 year: 2017 end-page: 12547 ident: CR20 article-title: Metabolic control of regulatory T cell (T ) survival and function by Lkb1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1715363114 – volume: 105 start-page: 7797 year: 2008 end-page: 7802 ident: CR13 article-title: T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0800928105 – volume: 9 start-page: 444 year: 2018 ident: CR10 article-title: Tumor necrosis factor alpha and regulatory T cells in oncoimmunology publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00444 – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: CR42 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 55 start-page: 534 year: 2014 end-page: 539 ident: CR50 article-title: Targeted chemoradiation in metastatic colorectal cancer: a phase I trial of 131I-huA33 with concurrent capecitabine publication-title: J. Nucl. Med. doi: 10.2967/jnumed.113.132761 – volume: 9 year: 2018 ident: CR27 article-title: mTOR coordinates transcriptional programs and mitochondrial metabolism of activated T subsets to protect tissue homeostasis publication-title: Nat. Commun. doi: 10.1038/s41467-018-04392-5 – volume: 499 start-page: 485 year: 2013 end-page: 490 ident: CR55 article-title: mTORC1 couples immune signals and metabolic programming to establish T -cell function publication-title: Nature doi: 10.1038/nature12297 – volume: 1 start-page: 417 year: 2015 end-page: 425 ident: CR61 article-title: The molecular signatures database hallmark gene set collection publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 111 start-page: 453 year: 2008 end-page: 462 ident: CR12 article-title: Differential impact of mammalian target of rapamycin inhibition on CD4 CD25 Foxp3 regulatory T cells compared with conventional CD4 T cells publication-title: Blood doi: 10.1182/blood-2007-06-094482 – volume: 445 start-page: 936 year: 2007 end-page: 940 ident: CR34 article-title: Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells publication-title: Nature doi: 10.1038/nature05563 – volume: 48 start-page: 1046 year: 2018 end-page: 1059 ident: CR14 article-title: Proteomic analyses of human regulatory T cells reveal adaptations in signaling pathways that protect cellular identity publication-title: Immunity doi: 10.1016/j.immuni.2018.04.008 – volume: 16 start-page: 769 year: 2002 end-page: 777 ident: CR16 article-title: The CD28 signaling pathway regulates glucose metabolism publication-title: Immunity doi: 10.1016/S1074-7613(02)00323-0 – volume: 16 start-page: 188 year: 2015 end-page: 196 ident: CR11 article-title: Control of PI(3) kinase in T cells maintains homeostasis and lineage stability publication-title: Nat. Immunol. doi: 10.1038/ni.3077 – volume: 29 start-page: 2315 year: 2015 end-page: 2326 ident: CR21 article-title: Essential role of mitochondrial energy metabolism in Foxp3 T-regulatory cell function and allograft survival publication-title: FASEB J. doi: 10.1096/fj.14-268409 – volume: 30 start-page: 656 year: 2009 end-page: 665 ident: CR7 article-title: Human T regulatory cell therapy: take a billion or so and call me in the morning publication-title: Immunity doi: 10.1016/j.immuni.2009.04.006 – ident: CR33 – volume: 259 start-page: 88 year: 2014 end-page: 102 ident: CR2 article-title: tT s, pT s, and iT s: similarities and differences publication-title: Immunol. Rev. doi: 10.1111/imr.12160 – volume: 83 start-page: 793 year: 1995 end-page: 802 ident: CR46 article-title: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor publication-title: Cell doi: 10.1016/0092-8674(95)90192-2 – volume: 213 start-page: 1881 year: 2016 end-page: 1900 ident: CR49 article-title: Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion publication-title: J. Exp. Med. doi: 10.1084/jem.20151563 – volume: 44 start-page: 712 year: 2016 ident: CR28 article-title: The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements publication-title: Immunity doi: 10.1016/j.immuni.2016.02.022 – volume: 20 start-page: 61 year: 2014 end-page: 72 ident: CR40 article-title: The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.05.004 – volume: 9 start-page: 573 year: 2018 ident: CR47 article-title: An autocrine TNFα-tumor necrosis factor receptor 2 loop promotes epigenetic effects inducing human treg stability in vitro publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00573 – volume: 299 start-page: 1057 year: 2003 end-page: 1061 ident: CR4 article-title: Control of regulatory T cell development by the transcription factor Foxp3 publication-title: Science doi: 10.1126/science.1079490 – volume: 13 year: 2014 ident: CR66 article-title: Higher FOXP3–TSDR demethylation rates in adjacent normal tissues in patients with colon cancer were associated with worse survival publication-title: Mol. Cancer doi: 10.1186/1476-4598-13-153 – volume: 208 start-page: 1367 year: 2011 end-page: 1376 ident: CR19 article-title: HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of T 17 and T cells publication-title: J. Exp. Med. doi: 10.1084/jem.20110278 – volume: 81 start-page: 4021 year: 2009 end-page: 4026 ident: CR62 article-title: Liquid chromatography/tandem mass spectrometry of glycolytic intermediates: deconvolution of coeluting structural isomers based on unique product ion ratios publication-title: Anal. Chem. doi: 10.1021/ac9004698 – volume: 574 start-page: 575 year: 2019 end-page: 580 ident: CR51 article-title: Metabolic regulation of gene expression by histone lactylation publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 17 start-page: 1459 year: 2016 end-page: 1466 ident: CR23 article-title: Foxp3 and Toll-like receptor signaling balance T cell anabolic metabolism for suppression publication-title: Nat. Immunol. doi: 10.1038/ni.3577 – ident: CR48 – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: CR58 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 90 start-page: 3156 year: 2018 end-page: 3164 ident: CR64 article-title: METLIN: a technology platform for identifying knowns and unknowns publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04424 – volume: 97 start-page: 279 year: 2015 end-page: 283 ident: CR17 article-title: Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.2AB0514-273RR – ident: CR52 – volume: 113 start-page: 3.16B.11 year: 2016 end-page: 13.16B.14 ident: CR65 article-title: Measuring bioenergetics in T cells using a seahorse extracellular flux analyzer publication-title: Curr. Protoc. Immunol. – volume: 112 start-page: 2340 year: 2008 end-page: 2352 ident: CR8 article-title: Human CD25 Foxp3 regulatory T cells differentiate into IL-17-producing cells publication-title: Blood doi: 10.1182/blood-2008-01-133967 – volume: 36 start-page: 63 year: 2015 end-page: 70 ident: CR45 article-title: Confusing signals: recent progress in CTLA-4 biology publication-title: Trends Immunol. doi: 10.1016/j.it.2014.12.001 – volume: 40 start-page: 4288 year: 2012 end-page: 4297 ident: CR57 article-title: Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks042 – volume: 27 start-page: 747 year: 2005 end-page: 751 ident: CR63 article-title: METLIN: a metabolite mass spectral database publication-title: Ther. Drug Monit. doi: 10.1097/01.ftd.0000179845.53213.39 – volume: 17 start-page: 277 year: 2016 end-page: 285 ident: CR26 article-title: Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.3365 – ident: CR59 – volume: 12 start-page: 295 year: 2011 end-page: 303 ident: CR25 article-title: The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2 publication-title: Nat. Immunol. doi: 10.1038/ni.2005 – volume: 16 start-page: 769 year: 2002 ident: 271_CR16 publication-title: Immunity doi: 10.1016/S1074-7613(02)00323-0 – volume: 113 start-page: 3.16B.11 year: 2016 ident: 271_CR65 publication-title: Curr. Protoc. Immunol. doi: 10.1002/0471142735.im0316bs113 – volume: 208 start-page: 1367 year: 2011 ident: 271_CR19 publication-title: J. Exp. Med. doi: 10.1084/jem.20110278 – volume: 30 start-page: 656 year: 2009 ident: 271_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2009.04.006 – volume: 17 start-page: 1459 year: 2016 ident: 271_CR23 publication-title: Nat. Immunol. doi: 10.1038/ni.3577 – ident: 271_CR48 doi: 10.4049/jimmunol.1000560 – volume: 43 start-page: e47 year: 2015 ident: 271_CR60 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv007 – volume: 83 start-page: 793 year: 1995 ident: 271_CR46 publication-title: Cell doi: 10.1016/0092-8674(95)90192-2 – volume: 9 year: 2018 ident: 271_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04392-5 – volume: 97 start-page: 279 year: 2015 ident: 271_CR17 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.2AB0514-273RR – volume: 7 start-page: 49 year: 2018 ident: 271_CR36 publication-title: Cell Syst. doi: 10.1016/j.cels.2018.06.003 – volume: 17 start-page: 277 year: 2016 ident: 271_CR26 publication-title: Nat. Immunol. doi: 10.1038/ni.3365 – volume: 574 start-page: 575 year: 2019 ident: 271_CR51 publication-title: Nature doi: 10.1038/s41586-019-1678-1 – volume: 213 start-page: 1881 year: 2016 ident: 271_CR49 publication-title: J. Exp. Med. doi: 10.1084/jem.20151563 – volume: 22 start-page: 1509 year: 2018 ident: 271_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.01.040 – volume: 41 start-page: 460 year: 2016 ident: 271_CR43 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2016.02.003 – volume: 3 start-page: 939 year: 2003 ident: 271_CR44 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1248 – volume: 36 start-page: 63 year: 2015 ident: 271_CR45 publication-title: Trends Immunol. doi: 10.1016/j.it.2014.12.001 – volume: 131 start-page: 2651 year: 2018 ident: 271_CR6 publication-title: Blood doi: 10.1182/blood-2017-11-785865 – volume: 8 start-page: re4 year: 2015 ident: 271_CR53 publication-title: Sci. Signal doi: 10.1126/scisignal.2005970 – volume: 9 start-page: 573 year: 2018 ident: 271_CR47 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00573 – volume: 4 start-page: 330 year: 2003 ident: 271_CR3 publication-title: Nat. Immunol. doi: 10.1038/ni904 – volume: 9 start-page: 1849 year: 2018 ident: 271_CR38 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.01849 – volume: 16 start-page: 188 year: 2015 ident: 271_CR11 publication-title: Nat. Immunol. doi: 10.1038/ni.3077 – volume: 114 start-page: 12542 year: 2017 ident: 271_CR20 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1715363114 – volume: 9 start-page: 784 year: 2018 ident: 271_CR30 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00784 – volume: 16 start-page: 1174 year: 2015 ident: 271_CR29 publication-title: Nat. Immunol. doi: 10.1038/ni.3269 – volume: 55 start-page: 534 year: 2014 ident: 271_CR50 publication-title: J. Nucl. Med. doi: 10.2967/jnumed.113.132761 – volume: 499 start-page: 485 year: 2013 ident: 271_CR55 publication-title: Nature doi: 10.1038/nature12297 – volume: 27 start-page: 2948 year: 2019 ident: 271_CR54 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.020 – volume: 81 start-page: 4021 year: 2009 ident: 271_CR62 publication-title: Anal. Chem. doi: 10.1021/ac9004698 – volume: 5 start-page: e38 year: 2007 ident: 271_CR5 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0050038 – volume: 12 start-page: 295 year: 2011 ident: 271_CR25 publication-title: Nat. Immunol. doi: 10.1038/ni.2005 – volume: 20 start-page: 61 year: 2014 ident: 271_CR40 publication-title: Cell Metab. doi: 10.1016/j.cmet.2014.05.004 – volume: 27 start-page: 747 year: 2005 ident: 271_CR63 publication-title: Ther. Drug Monit. doi: 10.1097/01.ftd.0000179845.53213.39 – volume: 111 start-page: 453 year: 2008 ident: 271_CR12 publication-title: Blood doi: 10.1182/blood-2007-06-094482 – volume: 2 start-page: e89160 year: 2017 ident: 271_CR24 publication-title: JCI Insight doi: 10.1172/jci.insight.89160 – volume: 186 start-page: 3299 year: 2011 ident: 271_CR18 publication-title: J. Immunol. doi: 10.4049/jimmunol.1003613 – volume: 11 start-page: e0156311 year: 2016 ident: 271_CR39 publication-title: PLoS ONE doi: 10.1371/journal.pone.0156311 – volume: 551 start-page: 115 year: 2017 ident: 271_CR41 publication-title: Nature doi: 10.1038/nature24057 – volume: 9 year: 2018 ident: 271_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02672-0 – volume: 115 start-page: 13051 year: 2018 ident: 271_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807499115 – volume: 48 start-page: 1046 year: 2018 ident: 271_CR14 publication-title: Immunity doi: 10.1016/j.immuni.2018.04.008 – ident: 271_CR52 doi: 10.3389/fimmu.2018.00141 – volume: 324 start-page: 1029 year: 2009 ident: 271_CR42 publication-title: Science doi: 10.1126/science.1160809 – volume: 445 start-page: 936 year: 2007 ident: 271_CR34 publication-title: Nature doi: 10.1038/nature05563 – ident: 271_CR59 doi: 10.12688/f1000research.8987.2 – volume: 23 start-page: 295 year: 2019 ident: 271_CR9 publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2019.1586886 – volume: 40 start-page: 4288 year: 2012 ident: 271_CR57 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks042 – volume: 25 start-page: 1282 year: 2017 ident: 271_CR22 publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.12.018 – volume: 105 start-page: 7797 year: 2008 ident: 271_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0800928105 – volume: 9 start-page: 444 year: 2018 ident: 271_CR10 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00444 – volume: 10 start-page: 38 year: 2019 ident: 271_CR32 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00038 – volume: 50 start-page: 302 year: 2019 ident: 271_CR1 publication-title: Immunity doi: 10.1016/j.immuni.2019.01.020 – volume: 181 start-page: 2855 year: 2008 ident: 271_CR35 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.4.2855 – volume: 1 start-page: 417 year: 2015 ident: 271_CR61 publication-title: Cell Syst. doi: 10.1016/j.cels.2015.12.004 – volume: 112 start-page: 2340 year: 2008 ident: 271_CR8 publication-title: Blood doi: 10.1182/blood-2008-01-133967 – volume: 44 start-page: 712 year: 2016 ident: 271_CR28 publication-title: Immunity doi: 10.1016/j.immuni.2016.02.022 – volume: 125 start-page: 194 year: 2015 ident: 271_CR37 publication-title: J. Clin. Invest. doi: 10.1172/JCI76012 – volume: 13 year: 2014 ident: 271_CR66 publication-title: Mol. Cancer doi: 10.1186/1476-4598-13-153 – volume: 259 start-page: 88 year: 2014 ident: 271_CR2 publication-title: Immunol. Rev. doi: 10.1111/imr.12160 – volume: 299 start-page: 1057 year: 2003 ident: 271_CR4 publication-title: Science doi: 10.1126/science.1079490 – volume: 90 start-page: 3156 year: 2018 ident: 271_CR64 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04424 – volume: 26 start-page: 139 year: 2010 ident: 271_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 29 start-page: 2315 year: 2015 ident: 271_CR21 publication-title: FASEB J. doi: 10.1096/fj.14-268409 – ident: 271_CR33 doi: 10.4049/jimmunol.1901250 |
| SSID | ssj0002114129 |
| Score | 2.3584204 |
| Snippet | Following activation, conventional T (T
conv
) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T
reg
) cells reportedly repress the mTOR pathway... Following activation, conventional T (T ) cells undergo an mTOR-driven glycolytic switch. Regulatory T (T ) cells reportedly repress the mTOR pathway and avoid... Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1046 |
| SubjectTerms | 1-Phosphatidylinositol 3-kinase 631/250/1619/554 631/250/2152 631/443/319 631/45/320 Antigens Biomedical and Life Sciences Blood Carbon CD25 antigen CD3 antigen CD3 Complex - metabolism Cell activation Cell proliferation Citric Acid Cycle - drug effects Effector cells Flow cytometry Foxp3 protein Glucose Glucose - metabolism Glucose - pharmacology Glycolysis Glycolysis - drug effects Humans Immunoregulation Kinases Lactic acid Lactic Acid - blood Lactic Acid - metabolism Life Sciences Lymphocytes Lymphocytes T Metabolism Metabolites Metabolome Monoclonal antibodies Phosphatidylinositol 3-Kinases - metabolism Proteins Protocol Receptors, Tumor Necrosis Factor, Type II - drug effects Receptors, Tumor Necrosis Factor, Type II - metabolism RNA - chemistry Sequence Analysis, RNA Signal Transduction Statistical analysis T-Lymphocytes, Regulatory - metabolism Thymus TOR protein TOR Serine-Threonine Kinases - metabolism Tricarboxylic acid cycle Tumor necrosis factor receptors Tumor necrosis factor-TNF Variance analysis |
| Title | Stable human regulatory T cells switch to glycolysis following TNF receptor 2 costimulation |
| URI | https://link.springer.com/article/10.1038/s42255-020-00271-w https://www.ncbi.nlm.nih.gov/pubmed/32958937 https://www.proquest.com/docview/3226078127 https://www.proquest.com/docview/2444881755 |
| Volume | 2 |
| WOSCitedRecordID | wos000581831300010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 2522-5812 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002114129 issn: 2522-5812 databaseCode: BENPR dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2522-5812 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002114129 issn: 2522-5812 databaseCode: M7P dateStart: 20190101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2522-5812 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002114129 issn: 2522-5812 databaseCode: 7X7 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. customDbUrl: eissn: 2522-5812 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0002114129 issn: 2522-5812 databaseCode: 7RV dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7x6KGXAqItKbAyUm8lIrGzsXNCgFhxWq3QFq3EwbLzqJCWDSRLV_z7zjjeRRWCCxfnkDgZeZ4Zj-cD-GnR6eYiKkJ0P2mYSMFDa0SCGh8bW8VxwTPjwCbkcKgmk2zkE26tL6tc2kRnqIs6pxz5CQpeSo1puDx9eAwJNYp2Vz2ExjpsUpcE4Ur3RqscC_7cJOjP_FmZSKiTNkH5pSPJdJyayzhc_O-PXgWZrzZInd8ZbH2U4m344iNOdtaJyA6slbNduMUg005L5iD6WNMB0tfNMxszSuW3rF3cIT_ZvGZ_ps8oLNS4hFUoNPUCyWTj4QBnUUlM3TDO8hotxb1HAvsKvweX44ur0OMshHkSZ_OwsMKi5hue2z4vDMfZysqMQj1ZqLhv08hGqRWltXFmVWWFymVlHKgEqm8hvsHGrJ6Ve8AyWUSJSVNJ10pkSmI8UyHbrSxVakQA8XK1de6bkBMWxlS7zXChdMchjRzSjkN6EcCv1ZyHrgXHu08fLLmhvTq2-oUVARytbqMi0ZKaWVk_tRrjHDRmGE31A_jeMX_1OcGzPgV2ARwvpeHl5W_T8uN9WvbhMydJdKWBB7Axb57KQ_iU_53ftU0P1uX1DY0T6UbVg83zy-HouueE_B9vBP5w |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VggQXCgLaQAEjwQmixnY2dg6oQsCqVcsKoQVV4uDajlNVWjYl2RLtn-I3MnaSrVBFbz1wyiGxk9hvPmzPzAN4adDoWp4UMZqfLE4FZ7HRPEWJp9qUlBYs14FsQkwm8ugo_7wGv4dcGB9WOejEoKiLyvo98h0EXuYL0zCxe_Yz9qxR_nR1oNDoYHHgli0u2Zq3-x9wfl8xNv44fb8X96wCsU1pvogLww3iXDNrRqzQzFknjci9YyMKSUcmS0ySGe6MobmRpeHSilIHCgUEa8Gx3xtwE_U49SFk4su31Z4OLqZStJ99bk7C5U6Torz4FGifvs0Ejdu_7d8lp_bSgWywc-ON_22E7sHd3qMm7zoRuA9rbv4AvqMTbWaOBApCUrsTz1JW1UsyJf6ooiFNe4p4JYuKnMyWKAy-MAspUSiqFoeFTCdjbOVDfqqaMGIr1IQ_eqazh_D1Wv7nEazPq7nbApKLIkl1lgl_LXkuBfprJcLaCCczzSOgw-wq2xdZ91wfMxUO-7lUHSIUIkIFRKg2gterNmddiZErn94eZl_16qZRF1MfwYvVbVQUfkj13FXnjUI_DpU1eoujCDY7sK1ex1k-8o5rBG8G9F10_u9veXz1tzyH23vTT4fqcH9y8ATuMC8FIQxyG9YX9bl7Crfsr8VpUz8LYkTg-LpR-QfitVhg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+human+regulatory+T+cells+switch+to+glycolysis+following+TNF+receptor+2+costimulation&rft.jtitle=Nature+metabolism&rft.au=de+Kivit%2C+Sander&rft.au=Mensink%2C+Mark&rft.au=Hoekstra%2C+Anna+T&rft.au=Berlin%2C+Ilana&rft.date=2020-10-01&rft.eissn=2522-5812&rft.volume=2&rft.issue=10&rft.spage=1046&rft_id=info:doi/10.1038%2Fs42255-020-00271-w&rft_id=info%3Apmid%2F32958937&rft.externalDocID=32958937 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2522-5812&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2522-5812&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2522-5812&client=summon |