Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering

This paper considers the parameter estimation problems of Hammerstein–Wiener systems by using the data filtering technique. In order to improve the estimation accuracy, the data filtering-based recursive generalized extended least squares algorithm is derived. In order to improve the computational e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear dynamics Ročník 84; číslo 2; s. 1045 - 1053
Hlavní autori: Wang, Yanjiao, Ding, Feng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Dordrecht Springer Netherlands 01.04.2016
Springer Nature B.V
Predmet:
ISSN:0924-090X, 1573-269X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper considers the parameter estimation problems of Hammerstein–Wiener systems by using the data filtering technique. In order to improve the estimation accuracy, the data filtering-based recursive generalized extended least squares algorithm is derived. In order to improve the computational efficiency, the data filtering-based generalized extended stochastic gradient algorithm is derived for estimating the system parameters. Finally, the computational efficiency of the proposed algorithms is analyzed and compared. The simulation results indicate that the proposed algorithms can effectively estimate the parameters of Hammerstein–Wiener systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2548-5