The numerical solution of Newton’s problem of least resistance

In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in R 2 . We propose two different methods for solving it numerically. First, we discretize this problem by writing the c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 147; číslo 1-2; s. 331 - 350
Hlavní autor: Wachsmuth, Gerd
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2014
Springer Nature B.V
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in R 2 . We propose two different methods for solving it numerically. First, we discretize this problem by writing the concave solution function as a infimum over a finite number of affine functions. The discretized problem could be solved by standard optimization software efficiently. Second, we conjecture that the optimal body has a certain structure. We exploit this structure and obtain a variational problem in R 1 . Deriving its Euler–Lagrange equation yields a program with two unknowns, which can be solved quickly.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0756-2