The numerical solution of Newton’s problem of least resistance

In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in R 2 . We propose two different methods for solving it numerically. First, we discretize this problem by writing the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming Jg. 147; H. 1-2; S. 331 - 350
1. Verfasser: Wachsmuth, Gerd
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2014
Springer Nature B.V
Schlagworte:
ISSN:0025-5610, 1436-4646
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider Newton’s problem of finding a convex body of least resistance. This problem could equivalently be written as a variational problem over concave functions in R 2 . We propose two different methods for solving it numerically. First, we discretize this problem by writing the concave solution function as a infimum over a finite number of affine functions. The discretized problem could be solved by standard optimization software efficiently. Second, we conjecture that the optimal body has a certain structure. We exploit this structure and obtain a variational problem in R 1 . Deriving its Euler–Lagrange equation yields a program with two unknowns, which can be solved quickly.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-014-0756-2